Grothendieck–Neeman duality and the ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Grothendieck–Neeman duality and the Wirthmüller isomorphism
Author(s) :
Balmer, Paul [Auteur]
Department of Mathematics [UCLA]
Dell’Ambrogio, Ivo [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
Sanders, Beren [Auteur]
Department of Mathematics [UCLA]
Dell’Ambrogio, Ivo [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
Sanders, Beren [Auteur]
Journal title :
Compositio Mathematica
Pages :
1740-1776
Publisher :
Foundation Compositio Mathematica
Publication date :
2016-05-23
ISSN :
0010-437X
HAL domain(s) :
Mathématiques [math]/Catégories et ensembles [math.CT]
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Topologie algébrique [math.AT]
Mathématiques [math]/K-théorie et homologie [math.KT]
Mathématiques [math]/Théorie des représentations [math.RT]
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Topologie algébrique [math.AT]
Mathématiques [math]/K-théorie et homologie [math.KT]
Mathématiques [math]/Théorie des représentations [math.RT]
English abstract : [en]
We clarify the relationship between Grothendieck duality à la Neeman and the Wirthmüller isomorphism à la Fausk–Hu–May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly ...
Show more >We clarify the relationship between Grothendieck duality à la Neeman and the Wirthmüller isomorphism à la Fausk–Hu–May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly generated tensor-triangulated categories, which leads to a surprising trichotomy: there exist either exactly three adjoints, exactly five, or infinitely many. We highlight the importance of so-called relative dualizing objects and explain how they give rise to dualities on canonical subcategories. This yields a duality theory rich enough to capture the main features of Grothendieck duality in algebraic geometry, of generalized Pontryagin–Matlis duality à la Dwyer–Greenless–Iyengar in the theory of ring spectra, and of Brown–Comenetz duality à la Neeman in stable homotopy theory.Show less >
Show more >We clarify the relationship between Grothendieck duality à la Neeman and the Wirthmüller isomorphism à la Fausk–Hu–May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly generated tensor-triangulated categories, which leads to a surprising trichotomy: there exist either exactly three adjoints, exactly five, or infinitely many. We highlight the importance of so-called relative dualizing objects and explain how they give rise to dualities on canonical subcategories. This yields a duality theory rich enough to capture the main features of Grothendieck duality in algebraic geometry, of generalized Pontryagin–Matlis duality à la Dwyer–Greenless–Iyengar in the theory of ring spectra, and of Brown–Comenetz duality à la Neeman in stable homotopy theory.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Collections :
Source :
Submission date :
2025-01-24T14:12:46Z
Files
- 1501.01999
- Open access
- Access the document