Adaptive rational block Arnoldi methods ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Adaptive rational block Arnoldi methods for model reductions in large-scale MIMO dynamical systems
Auteur(s) :
Hached, Mustapha [Auteur]
Université de Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Jbilou, Khalide [Auteur]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Abidi, Oussama [Auteur]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Université de Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Jbilou, Khalide [Auteur]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Abidi, Oussama [Auteur]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Titre de la revue :
New Trends in Mathematical Science
Pagination :
227-239
Date de publication :
2016-04-28
ISSN :
2147-5520
Mot(s)-clé(s) en anglais :
Dynamical systems
model reduction
rational block Krylov subspaces
transfer functions
model reduction
rational block Krylov subspaces
transfer functions
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
In recent years, a great interest has been shown towards Krylov subspace techniques applied to model order reduction of large-scale dynamical systems. A special interest has been devoted to single-input single-output (SISO) ...
Lire la suite >In recent years, a great interest has been shown towards Krylov subspace techniques applied to model order reduction of large-scale dynamical systems. A special interest has been devoted to single-input single-output (SISO) systems by using moment matching techniques based on Arnoldi or Lanczos algorithms. In this paper, we consider multiple-input multiple-output (MIMO) dynamical systems and introduce the rational block Arnoldi process to design low order dynamical systems that are close in some sense to the original MIMO dynamical system. Rational Krylov subspace methods are based on the choice of suitable shifts that are selected a priori or adaptively. In this paper, we propose an adaptive selection of those shifts and show the efficiency of this approach in our numerical tests. We also give some new block Arnoldi-like relations that are used to propose an upper bound for the norm of the error on the transfer function.Lire moins >
Lire la suite >In recent years, a great interest has been shown towards Krylov subspace techniques applied to model order reduction of large-scale dynamical systems. A special interest has been devoted to single-input single-output (SISO) systems by using moment matching techniques based on Arnoldi or Lanczos algorithms. In this paper, we consider multiple-input multiple-output (MIMO) dynamical systems and introduce the rational block Arnoldi process to design low order dynamical systems that are close in some sense to the original MIMO dynamical system. Rational Krylov subspace methods are based on the choice of suitable shifts that are selected a priori or adaptively. In this paper, we propose an adaptive selection of those shifts and show the efficiency of this approach in our numerical tests. We also give some new block Arnoldi-like relations that are used to propose an upper bound for the norm of the error on the transfer function.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T14:19:01Z
Fichiers
- ntmsci.2016218259
- Accès libre
- Accéder au document