Universal approximation theorem for Dirichlet ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Universal approximation theorem for Dirichlet series
Auteur(s) :
Demanze, O. [Auteur]
Mouze, Augustin [Auteur]
Centrale Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Mouze, Augustin [Auteur]

Centrale Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
International Journal of Mathematics and Mathematical Sciences
Pagination :
1-11
Éditeur :
Hindawi Publishing Corporation
Date de publication :
2006
ISSN :
0161-1712
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
The paper deals with an extension theorem by Costakis and Vlachou on simultaneous approximation for holomorphic function to the setting of Dirichlet series, which are absolutely convergent in the right half of the complex ...
Lire la suite >The paper deals with an extension theorem by Costakis and Vlachou on simultaneous approximation for holomorphic function to the setting of Dirichlet series, which are absolutely convergent in the right half of the complex plane. The derivation operator used in the analytic case is substituted by a weighted backward shift operator in the Dirichlet case. We show the similarities and extensions in comparing both results. Several density results are proved that finally lead to the main theorem on simultaneous approximation.Lire moins >
Lire la suite >The paper deals with an extension theorem by Costakis and Vlachou on simultaneous approximation for holomorphic function to the setting of Dirichlet series, which are absolutely convergent in the right half of the complex plane. The derivation operator used in the analytic case is substituted by a weighted backward shift operator in the Dirichlet case. We show the similarities and extensions in comparing both results. Several density results are proved that finally lead to the main theorem on simultaneous approximation.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T14:48:58Z