Sharp Gaussian decay for the one-dimensional ...
Type de document :
Pré-publication ou Document de travail
URL permanente :
Titre :
Sharp Gaussian decay for the one-dimensional harmonic oscillator
Auteur(s) :
Radchenko, Danylo [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ramos, João P. G. [Auteur]
Department of Mathematics [ETH Zurich] [D-MATH]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ramos, João P. G. [Auteur]
Department of Mathematics [ETH Zurich] [D-MATH]
Date de publication :
2023-05-29
Mot(s)-clé(s) en anglais :
Hermite polynomials
harmonic oscillator
Plancherel-Rotach formula
harmonic oscillator
Plancherel-Rotach formula
Discipline(s) HAL :
Mathématiques [math]
Mathématiques [math]/Analyse classique [math.CA]
Mathématiques [math]/Analyse classique [math.CA]
Résumé en anglais : [en]
We prove a conjecture by Vemuri by proving sharp bounds on $\ell^{\kappa}$ sums of Hermite functions multiplied by an exponentially decaying factor. More explicitly, we prove that, for each $y>0,$ we have \[ \sum_{n \ge ...
Lire la suite >We prove a conjecture by Vemuri by proving sharp bounds on $\ell^{\kappa}$ sums of Hermite functions multiplied by an exponentially decaying factor. More explicitly, we prove that, for each $y>0,$ we have \[ \sum_{n \ge 1} |h_n(x)|^{\kappa} \frac{e^{-\kappa n y}}{n^{\beta}} \ll_y x^{\frac{1}{2} - 2\beta} e^{-\kappa x^2 \tanh(y)/2}, \] for all $x \in \mathbb{R}$ sufficiently large. Our proof involves the classical Plancherel-Rotach asymptotic formula for Hermite polynomials and a careful local analysis near the maximum point of such a bound.Lire moins >
Lire la suite >We prove a conjecture by Vemuri by proving sharp bounds on $\ell^{\kappa}$ sums of Hermite functions multiplied by an exponentially decaying factor. More explicitly, we prove that, for each $y>0,$ we have \[ \sum_{n \ge 1} |h_n(x)|^{\kappa} \frac{e^{-\kappa n y}}{n^{\beta}} \ll_y x^{\frac{1}{2} - 2\beta} e^{-\kappa x^2 \tanh(y)/2}, \] for all $x \in \mathbb{R}$ sufficiently large. Our proof involves the classical Plancherel-Rotach asymptotic formula for Hermite polynomials and a careful local analysis near the maximum point of such a bound.Lire moins >
Langue :
Anglais
Commentaire :
5 pages
Collections :
Source :
Date de dépôt :
2025-01-24T14:55:08Z
Fichiers
- document
- Accès libre
- Accéder au document
- Proof_of_Vemuri_s_Conjecture.pdf
- Accès libre
- Accéder au document
- 2305.18546
- Accès libre
- Accéder au document