• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A motivic Fundamental Lemma
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Title :
A motivic Fundamental Lemma
Author(s) :
Forey, Arthur [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Loeser, François [Auteur]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Wyss, Dimitri [Auteur]
Département de Mathématiques - EPFL
Publication date :
2023-08-23
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
In this paper we prove motivic versions of the Langlands-Shelstad Fundamental Lemma and Ng\^o's Geometric Stabilization. To achieve this, we follow the strategy from the recent proof by Groechenig, Wyss and Ziegler which ...
Show more >
In this paper we prove motivic versions of the Langlands-Shelstad Fundamental Lemma and Ng\^o's Geometric Stabilization. To achieve this, we follow the strategy from the recent proof by Groechenig, Wyss and Ziegler which avoided the use of perverse sheaves using instead $p$-adic integration and Tate duality. We make a key use of a construction of Denef and Loeser which assigns a virtual motive to any definable set in the theory of pseudo-finite fields.Show less >
Language :
Anglais
Comment :
53 pages
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Files
Thumbnail
  • 2308.12195
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017