From geodesic extrapolation to a variational ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
From geodesic extrapolation to a variational BDF2 scheme for Wasserstein gradient flows
Author(s) :
Gallouët, Thomas [Auteur]
Méthodes particulaires utilisant Monge-Ampère [PARMA]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Natale, Andrea [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Todeschi, Gabriele [Auteur]
Institut des Sciences de la Terre [ISTerre]
Méthodes particulaires utilisant Monge-Ampère [PARMA]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Natale, Andrea [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Todeschi, Gabriele [Auteur]
Institut des Sciences de la Terre [ISTerre]
Journal title :
Mathematics of Computation
Pages :
2769-2810
Publisher :
American Mathematical Society
Publication date :
2024
ISSN :
0025-5718
English keyword(s) :
Optimal transport
Wasserstein extrapolation
Wasserstein gradient flows
BDF2
Wasserstein extrapolation
Wasserstein gradient flows
BDF2
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Analyse numérique [math.NA]
English abstract : [en]
We introduce a time discretization for Wasserstein gradient flows based on the classical Backward Differentiation Formula of order two. The main building block of the scheme is the notion of geodesic extrapolation in the ...
Show more >We introduce a time discretization for Wasserstein gradient flows based on the classical Backward Differentiation Formula of order two. The main building block of the scheme is the notion of geodesic extrapolation in the Wasserstein space, which in general is not uniquely defined. We propose several possible definitions for such an operation, and we prove convergence of the resulting scheme to the limit PDE, in the case of the Fokker-Planck equation. For a specific choice of extrapolation we also prove a more general result, that is convergence towards EVI flows. Finally, we propose a variational finite volume discretization of the scheme which numerically achieves second order accuracy in both space and time.Show less >
Show more >We introduce a time discretization for Wasserstein gradient flows based on the classical Backward Differentiation Formula of order two. The main building block of the scheme is the notion of geodesic extrapolation in the Wasserstein space, which in general is not uniquely defined. We propose several possible definitions for such an operation, and we prove convergence of the resulting scheme to the limit PDE, in the case of the Fokker-Planck equation. For a specific choice of extrapolation we also prove a more general result, that is convergence towards EVI flows. Finally, we propose a variational finite volume discretization of the scheme which numerically achieves second order accuracy in both space and time.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- document
- Open access
- Access the document
- WassersteinExtrapolationBDF2.pdf
- Open access
- Access the document
- 2209.14622
- Open access
- Access the document