• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perfection uniforme pour les échanges ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.5802/aif.3502
Title :
Perfection uniforme pour les échanges d'intervalles avec ou sans retournements
Author(s) :
Guelman, Nancy [Auteur]
Universidad de la República de Uruguay = University of the Republic of Uruguay [Montevideo] [UDELAR]
Liousse, Isabelle [Auteur] refId
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Annales de l'Institut Fourier
Pages :
1477-1501
Publisher :
Association des Annales de l'Institut Fourier
Publication date :
2022-09-12
ISSN :
0373-0956
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
Let G be the group of all Interval Exchange Transformations. Results of Arnoux-Fathi ([Arn81b]), Sah ([Sah81]) and Vorobets ([Vor17]) state that G 0 the subgroup of G generated by its commutators is simple. In ([Arn81b]), ...
Show more >
Let G be the group of all Interval Exchange Transformations. Results of Arnoux-Fathi ([Arn81b]), Sah ([Sah81]) and Vorobets ([Vor17]) state that G 0 the subgroup of G generated by its commutators is simple. In ([Arn81b]), Arnoux proved that the group G of all Interval Exchange Transformations with flips is simple. We establish that every element of G has a commutator length not exceeding 6. Moreover, we give conditions on G that guarantee that the commutator lengths of the elements of G 0 are uniformly bounded, and in this case for any g ∈ G 0 this length is at most 5. As analogous arguments work for the involution length in G, we add an appendix whose purpose is to prove that every element of G has an involution length not exceeding 12.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Groupes d'homéomorphismes de variétés
Centre Européen pour les Mathématiques, la Physique et leurs Interactions
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • U_perf_SyRev_IET.pdf
  • Open access
  • Access the document
Thumbnail
  • 1910.08923
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017