Epsilon-hypercyclic operators
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Epsilon-hypercyclic operators
Auteur(s) :
Badea, Catalin [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
Grivaux, Sophie [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Müller, Vladimir [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
Grivaux, Sophie [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Müller, Vladimir [Auteur]
Titre de la revue :
Ergodic Theory and Dynamical Systems
Pagination :
1597-1606
Éditeur :
Cambridge University Press (CUP)
Date de publication :
2010-12
ISSN :
0143-3857
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
Abstract Let X be a separable infinite-dimensional Banach space, and T a bounded linear operator on X ; T is hypercyclic if there is a vector x in X with dense orbit under the action of T . For a fixed ε∈(0,1), we say that ...
Lire la suite >Abstract Let X be a separable infinite-dimensional Banach space, and T a bounded linear operator on X ; T is hypercyclic if there is a vector x in X with dense orbit under the action of T . For a fixed ε∈(0,1), we say that T is ε-hypercyclic if there exists a vector x in X such that for every non-zero vector y ∈ X there exists an integer n with $\|T^nx-y\|\leq \varepsilon \|y\|$ . The main result of this paper is a construction of a bounded linear operator T on the Banach space ℓ 1 which is ε-hypercyclic without being hypercyclic. This answers a question from V. Müller [Three problems, Mini-Workshop: Hypercyclicity and linear chaos, organized by T. Bermudez, G. Godefroy, K.-G. Grosse-Erdmann and A. Peris. Oberwolfach Rep. 3 (2006), 2227–2276].Lire moins >
Lire la suite >Abstract Let X be a separable infinite-dimensional Banach space, and T a bounded linear operator on X ; T is hypercyclic if there is a vector x in X with dense orbit under the action of T . For a fixed ε∈(0,1), we say that T is ε-hypercyclic if there exists a vector x in X such that for every non-zero vector y ∈ X there exists an integer n with $\|T^nx-y\|\leq \varepsilon \|y\|$ . The main result of this paper is a construction of a bounded linear operator T on the Banach space ℓ 1 which is ε-hypercyclic without being hypercyclic. This answers a question from V. Müller [Three problems, Mini-Workshop: Hypercyclicity and linear chaos, organized by T. Bermudez, G. Godefroy, K.-G. Grosse-Erdmann and A. Peris. Oberwolfach Rep. 3 (2006), 2227–2276].Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T15:33:41Z
Fichiers
- ehyp5.pdf
- Accès libre
- Accéder au document