Cluster-Specific Predictions with Multi-Task ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Cluster-Specific Predictions with Multi-Task Gaussian Processes
Auteur(s) :
Leroy, Arthur [Auteur]
University of Manchester [Manchester]
Latouche, Pierre [Auteur]
Laboratoire de Mathématiques Blaise Pascal [LMBP]
Équipe Géostatistique
Mathématiques Appliquées Paris 5 [MAP5 - UMR 8145]
Guedj, Benjamin [Auteur]
The Inria London Programme [Inria-London]
MOdel for Data Analysis and Learning [MODAL]
Inria-CWI [Inria-CWI]
Department of Computer science [University College of London] [UCL-CS]
University College of London [London] [UCL]
Gey, Servane [Auteur]
Mathématiques Appliquées Paris 5 [MAP5 - UMR 8145]
University of Manchester [Manchester]
Latouche, Pierre [Auteur]
Laboratoire de Mathématiques Blaise Pascal [LMBP]
Équipe Géostatistique
Mathématiques Appliquées Paris 5 [MAP5 - UMR 8145]
Guedj, Benjamin [Auteur]

The Inria London Programme [Inria-London]
MOdel for Data Analysis and Learning [MODAL]
Inria-CWI [Inria-CWI]
Department of Computer science [University College of London] [UCL-CS]
University College of London [London] [UCL]
Gey, Servane [Auteur]
Mathématiques Appliquées Paris 5 [MAP5 - UMR 8145]
Titre de la revue :
Journal of Machine Learning Research
Pagination :
1-49
Éditeur :
Microtome Publishing
Date de publication :
2023-01-02
ISSN :
1532-4435
Mot(s)-clé(s) en anglais :
Gaussian processes mixture
curve clustering
multi-task learning
variational EM
cluster-specific predictions
curve clustering
multi-task learning
variational EM
cluster-specific predictions
Discipline(s) HAL :
Informatique [cs]/Apprentissage [cs.LG]
Statistiques [stat]/Calcul [stat.CO]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Machine Learning [stat.ML]
Statistiques [stat]/Calcul [stat.CO]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Machine Learning [stat.ML]
Résumé en anglais : [en]
A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for ...
Lire la suite >A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors' estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty in both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performance when dealing with group-structured data. The model handles irregular grids of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real datasets. The overall algorithm, called MagmaClust, is publicly available as an R package.Lire moins >
Lire la suite >A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors' estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty in both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performance when dealing with group-structured data. The model handles irregular grids of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real datasets. The overall algorithm, called MagmaClust, is publicly available as an R package.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Commentaire :
47 pages
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- pdf_HAL.pdf
- Accès libre
- Accéder au document
- 2011.07866
- Accès libre
- Accéder au document