Computing the cut locus of a Riemannian ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Computing the cut locus of a Riemannian manifold via optimal transport
Auteur(s) :
Facca, Enrico [Auteur correspondant]
Reliable numerical approximations of dissipative systems [RAPSODI]
Berti, Luca [Auteur]
Institut de Recherche Mathématique Avancée [IRMA]
Fassò, Francesco [Auteur]
Dipartimento di Matematica [Padova]
Putti, Mario [Auteur]
Dipartimento di Matematica [Padova]
Reliable numerical approximations of dissipative systems [RAPSODI]
Berti, Luca [Auteur]
Institut de Recherche Mathématique Avancée [IRMA]
Fassò, Francesco [Auteur]
Dipartimento di Matematica [Padova]
Putti, Mario [Auteur]
Dipartimento di Matematica [Padova]
Titre de la revue :
ESAIM: Mathematical Modelling and Numerical Analysis
Pagination :
1939-1954
Éditeur :
Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
Date de publication :
2022-11
ISSN :
2822-7840
Mot(s)-clé(s) en anglais :
Cut locus
Riemannian geometry
Optimal Transport problem
Monge–Kantorovich equations
geodesic distance
Riemannian geometry
Optimal Transport problem
Monge–Kantorovich equations
geodesic distance
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge–Kantorovich equations, a PDE formulation of ...
Lire la suite >In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge–Kantorovich equations, a PDE formulation of the optimal transport problem with cost equal to the geodesic distance. Combining this result with an optimal transport numerical solver, based on the so-called dynamical Monge–Kantorovich approach, we propose a novel framework for the numerical approximation of the cut locus of a point in a manifold. We show the applicability of the proposed method on a few examples settled on 2d-surfaces embedded in ℝ3, and discuss advantages and limitations.Lire moins >
Lire la suite >In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge–Kantorovich equations, a PDE formulation of the optimal transport problem with cost equal to the geodesic distance. Combining this result with an optimal transport numerical solver, based on the so-called dynamical Monge–Kantorovich approach, we propose a novel framework for the numerical approximation of the cut locus of a point in a manifold. We show the applicability of the proposed method on a few examples settled on 2d-surfaces embedded in ℝ3, and discuss advantages and limitations.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- m2an210108.pdf
- Accès libre
- Accéder au document