Asymptotic problems for wave-particle ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Asymptotic problems for wave-particle interactions: quantum and classical models
Auteur(s) :
Castella, François [Auteur]
Institut de Recherche Mathématique de Rennes [IRMAR]
Degond, Pierre [Auteur]
Mathématiques pour l'Industrie et la Physique [MIP]
Goudon, Thierry [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institut de Recherche Mathématique de Rennes [IRMAR]
Degond, Pierre [Auteur]
Mathématiques pour l'Industrie et la Physique [MIP]
Goudon, Thierry [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Nonlinearity
Pagination :
1677-1720
Éditeur :
IOP Publishing
Date de publication :
2007
ISSN :
0951-7715
Mot(s)-clé(s) en anglais :
RANDOM SCHRODINGER-EQUATION
TRANSPORT-EQUATIONS
DIFFERENTIAL-EQUATIONS
2-SCALE CONVERGENCE
HAMILTONIAN FLOW
LIMIT-THEOREM
BLOCH MODEL
HOMOGENIZATION
DIFFUSION
POTENTIALS
TRANSPORT-EQUATIONS
DIFFERENTIAL-EQUATIONS
2-SCALE CONVERGENCE
HAMILTONIAN FLOW
LIMIT-THEOREM
BLOCH MODEL
HOMOGENIZATION
DIFFUSION
POTENTIALS
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
This paper is devoted to the asymptotic analysis of both quantum and classical models which describe the evolution of electrons subject to the potential of an atomic crystal perturbed by the highly oscillating potential ...
Lire la suite >This paper is devoted to the asymptotic analysis of both quantum and classical models which describe the evolution of electrons subject to the potential of an atomic crystal perturbed by the highly oscillating potential of external electromagnetic waves. We derive either Einstein rate equations or diffusion equations with respect to the energy variable, depending on whether the initial model is quantum or classical. We point out the analogies and differences in the treatment of the two models, considering successively the cases of (quasi-) periodic perturbations or random ones. We point out the different roles of the relaxation effects according to the nature of the perturbation.Lire moins >
Lire la suite >This paper is devoted to the asymptotic analysis of both quantum and classical models which describe the evolution of electrons subject to the potential of an atomic crystal perturbed by the highly oscillating potential of external electromagnetic waves. We derive either Einstein rate equations or diffusion equations with respect to the energy variable, depending on whether the initial model is quantum or classical. We point out the analogies and differences in the treatment of the two models, considering successively the cases of (quasi-) periodic perturbations or random ones. We point out the different roles of the relaxation effects according to the nature of the perturbation.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- fulltext.pdf
- Accès libre
- Accéder au document