Large time dynamics of a classical system ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Large time dynamics of a classical system subject to a fast varying force
Auteur(s) :
Castella, François [Auteur]
Institut de Recherche Mathématique de Rennes [IRMAR]
Degond, Pierre [Auteur]
Mathématiques pour l'Industrie et la Physique [MIP]
Goudon, Thierry [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institut de Recherche Mathématique de Rennes [IRMAR]
Degond, Pierre [Auteur]
Mathématiques pour l'Industrie et la Physique [MIP]
Goudon, Thierry [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Communications in Mathematical Physics
Pagination :
23-49
Éditeur :
Springer Verlag
Date de publication :
2007
ISSN :
0010-3616
Mot(s)-clé(s) en anglais :
QUANTUM BOLTZMANN-EQUATION
VON-NEUMANN-EQUATION
TRANSPORT-EQUATIONS
DETERMINISTIC FRAMEWORK
KINETIC-EQUATIONS
RANDOM-MEDIA
BLOCH MODEL
HOMOGENIZATION
APPROXIMATION
CONVERGENCE
VON-NEUMANN-EQUATION
TRANSPORT-EQUATIONS
DETERMINISTIC FRAMEWORK
KINETIC-EQUATIONS
RANDOM-MEDIA
BLOCH MODEL
HOMOGENIZATION
APPROXIMATION
CONVERGENCE
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of particles subject to the sum of a fixed, confining, Hamiltonian, and a small, time-oscillating, perturbation. The equation ...
Lire la suite >We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of particles subject to the sum of a fixed, confining, Hamiltonian, and a small, time-oscillating, perturbation. The equation also involves an interaction operator which acts as a relaxation in the energy variable. This paper aims at providing a classical counterpart to the derivation of rate equations from the atomic Bloch equations. In the present classical setting, the homogenization procedure leads to a diffusion equation in the energy variable, rather than a rate equation, and the presence of the relaxation operator regularizes the limit process, leading to finite diffusion coefficients. The key assumption is that the time-oscillatory perturbation should have well-defined long time averages: our procedure includes general "ergodic" behaviors, amongst which periodic, or quasi-periodic potentials only are a particular case.Lire moins >
Lire la suite >We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of particles subject to the sum of a fixed, confining, Hamiltonian, and a small, time-oscillating, perturbation. The equation also involves an interaction operator which acts as a relaxation in the energy variable. This paper aims at providing a classical counterpart to the derivation of rate equations from the atomic Bloch equations. In the present classical setting, the homogenization procedure leads to a diffusion equation in the energy variable, rather than a rate equation, and the presence of the relaxation operator regularizes the limit process, leading to finite diffusion coefficients. The key assumption is that the time-oscillatory perturbation should have well-defined long time averages: our procedure includes general "ergodic" behaviors, amongst which periodic, or quasi-periodic potentials only are a particular case.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- fulltext.pdf
- Accès libre
- Accéder au document