GEOMETRIC, SPECTRAL AND ASYMPTOTIC PROPERTIES ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
GEOMETRIC, SPECTRAL AND ASYMPTOTIC PROPERTIES OF AVERAGED PRODUCTS OF PROJECTIONS IN BANACH SPACES
Auteur(s) :
Badea, Catalin [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
Lyubich, Yuri [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
Lyubich, Yuri [Auteur]
Titre de la revue :
Studia Mathematica
Pagination :
21-35
Éditeur :
Instytut Matematyczny - Polska Akademii Nauk
Date de publication :
2010-06-10
ISSN :
0039-3223
Mot(s)-clé(s) en anglais :
orthoprojections
Apostol modulus
boundary spectrum
Apostol modulus
boundary spectrum
Discipline(s) HAL :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Résumé en anglais : [en]
According to the von Neumann-Halperin and Lapidus theorems, in a Hilbert space the iterates of products or, respectively, of convex combinations of orthoprojections are strongly convergent. We extend these results to the ...
Lire la suite >According to the von Neumann-Halperin and Lapidus theorems, in a Hilbert space the iterates of products or, respectively, of convex combinations of orthoprojections are strongly convergent. We extend these results to the iterates of convex combinations of products of some projections in a complex Banach space. The latter is assumed uniformly convex or uniformly smooth for the orthoprojections, or reflexive for more special projections, in particular, for the hermitian ones. In all cases the proof of convergence is based on a known criterion in terms of the boundary spectrum.Lire moins >
Lire la suite >According to the von Neumann-Halperin and Lapidus theorems, in a Hilbert space the iterates of products or, respectively, of convex combinations of orthoprojections are strongly convergent. We extend these results to the iterates of convex combinations of products of some projections in a complex Banach space. The latter is assumed uniformly convex or uniformly smooth for the orthoprojections, or reflexive for more special projections, in particular, for the hermitian ones. In all cases the proof of convergence is based on a known criterion in terms of the boundary spectrum.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T16:06:15Z
Fichiers
- document
- Accès libre
- Accéder au document
- B-Lyubich-studia.pdf
- Accès libre
- Accéder au document