Systoles and diameters of hyperbolic surfaces
Type de document :
Article dans une revue scientifique: Article original
Titre :
Systoles and diameters of hyperbolic surfaces
Auteur(s) :
Balacheff, Florent [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Despré, Vincent [Auteur]
Geometric Algorithms and Models Beyond the Linear and Euclidean realm [GAMBLE]
Parlier, Hugo [Auteur]
Université du Luxembourg = University of Luxembourg = Universität Luxemburg [uni.lu]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Despré, Vincent [Auteur]
Geometric Algorithms and Models Beyond the Linear and Euclidean realm [GAMBLE]
Parlier, Hugo [Auteur]
Université du Luxembourg = University of Luxembourg = Universität Luxemburg [uni.lu]
Titre de la revue :
Kyoto Journal of Mathematics
Éditeur :
Duke University Press
Date de publication :
2022
ISSN :
2156-2261
Mot(s)-clé(s) en anglais :
2020 Mathematics Subject Classification: Primary: 32G15
53C22
57K20. Secondary: 30F60 systole
systolic inequalities
diameter
geodesics
hyperbolic surfaces
53C22
57K20. Secondary: 30F60 systole
systolic inequalities
diameter
geodesics
hyperbolic surfaces
Discipline(s) HAL :
Mathématiques [math]/Topologie géométrique [math.GT]
Résumé en anglais : [en]
In this article we explore the relationship between the systole and the diameter of closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which can be used to deduce that their ratio has a ...
Lire la suite >In this article we explore the relationship between the systole and the diameter of closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which can be used to deduce that their ratio has a (genus dependent) upper bound. asymptotic question was recently settled by Budzinski, Curien and Petri [6] where they * Supported by the FSE/AEI/MICINN grant RYC-2016-19334 "Local and global systolic geometry and topology" and the FEDER/AEI/MICIU grant PGC2018-095998-B-I00 "Local and global invariants in geometry".Lire moins >
Lire la suite >In this article we explore the relationship between the systole and the diameter of closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which can be used to deduce that their ratio has a (genus dependent) upper bound. asymptotic question was recently settled by Budzinski, Curien and Petri [6] where they * Supported by the FSE/AEI/MICINN grant RYC-2016-19334 "Local and global systolic geometry and topology" and the FEDER/AEI/MICIU grant PGC2018-095998-B-I00 "Local and global invariants in geometry".Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- 2011.03455.pdf
- Accès libre
- Accéder au document
- 2011.03455
- Accès libre
- Accéder au document