Convergence of a fully discrete and ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations
Auteur(s) :
Bailo, Rafael [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Carrillo, José [Auteur]
Mathematical Institute [Oxford] [MI]
Murakawa, Hideki [Auteur]
Ryukoku University
Schmidtchen, Markus [Auteur]
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Reliable numerical approximations of dissipative systems [RAPSODI]
Carrillo, José [Auteur]
Mathematical Institute [Oxford] [MI]
Murakawa, Hideki [Auteur]
Ryukoku University
Schmidtchen, Markus [Auteur]
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Titre de la revue :
Mathematical Models and Methods in Applied Sciences
Pagination :
2487-2522
Éditeur :
World Scientific Publishing
Date de publication :
2020
ISSN :
0218-2025
Mot(s)-clé(s) en anglais :
Finite-volume methods
convergence of numerical methods
drift-diffusion equations
integro-differential equations
convergence of numerical methods
drift-diffusion equations
integro-differential equations
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We study an implicit finite-volume scheme for non-linear, non-local aggregation-diffusion equations which exhibit a gradient-flow structure, recently introduced in [3]. Crucially, this scheme keeps the dissipation property ...
Lire la suite >We study an implicit finite-volume scheme for non-linear, non-local aggregation-diffusion equations which exhibit a gradient-flow structure, recently introduced in [3]. Crucially, this scheme keeps the dissipation property of an associated fully discrete energy, and does so unconditionally with respect to the time step. Our main contribution in this work is to show the convergence of the method under suitable assumptions on the diffusion functions and potentials involved.Lire moins >
Lire la suite >We study an implicit finite-volume scheme for non-linear, non-local aggregation-diffusion equations which exhibit a gradient-flow structure, recently introduced in [3]. Crucially, this scheme keeps the dissipation property of an associated fully discrete energy, and does so unconditionally with respect to the time step. Our main contribution in this work is to show the convergence of the method under suitable assumptions on the diffusion functions and potentials involved.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- 2002.10821.pdf
- Accès libre
- Accéder au document
- 2002.10821
- Accès libre
- Accéder au document