Detection of cellular aging in a Galton-Watson ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Detection of cellular aging in a Galton-Watson process
Auteur(s) :
Delmas, Jean-François [Auteur]
Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique [CERMICS]
Marsalle, Laurence [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique [CERMICS]
Marsalle, Laurence [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Stochastic Processes and their Applications
Pagination :
2495-2519
Éditeur :
Elsevier
Date de publication :
2010-12
ISSN :
0304-4149
Mot(s)-clé(s) en anglais :
Aging
Galton-Watson process
bifurcating Markov process
stable convergence
Galton-Watson process
bifurcating Markov process
stable convergence
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
We consider the bifurcating Markov chain model introduced by Guyon to detect cellular aging from cell lineage. To take into account the possibility for a cell to die, we use an underlying Galton-Watson process to describe ...
Lire la suite >We consider the bifurcating Markov chain model introduced by Guyon to detect cellular aging from cell lineage. To take into account the possibility for a cell to die, we use an underlying Galton-Watson process to describe the evolution of the cell lineage. We give in this more general framework a weak law of large number, an invariance principle and thus fluctuation results for the average over one generation or up to one generation. We also prove the fluctuations over each generation are independent. Then we present the natural modifications of the tests given by Guyon in cellular aging detection within the particular case of the auto-regressive model.Lire moins >
Lire la suite >We consider the bifurcating Markov chain model introduced by Guyon to detect cellular aging from cell lineage. To take into account the possibility for a cell to die, we use an underlying Galton-Watson process to describe the evolution of the cell lineage. We give in this more general framework a weak law of large number, an invariance principle and thus fluctuation results for the average over one generation or up to one generation. We also prove the fluctuations over each generation are independent. Then we present the natural modifications of the tests given by Guyon in cellular aging detection within the particular case of the auto-regressive model.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- agingGW_06_27.pdf
- Accès libre
- Accéder au document
- 0807.0749
- Accès libre
- Accéder au document