Large time behavior of nonlinear finite ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Large time behavior of nonlinear finite volume schemes for convection-diffusion equations
Auteur(s) :
Cancès, Clément [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Chainais-Hillairet, Claire [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Herda, Maxime [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Krell, Stella [Auteur]
COmplex Flows For Energy and Environment [COFFEE]
Laboratoire Jean Alexandre Dieudonné [LJAD]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Chainais-Hillairet, Claire [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Herda, Maxime [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Krell, Stella [Auteur]
COmplex Flows For Energy and Environment [COFFEE]
Laboratoire Jean Alexandre Dieudonné [LJAD]
Titre de la revue :
SIAM Journal on Numerical Analysis
Pagination :
2544-2571
Éditeur :
Society for Industrial and Applied Mathematics
Date de publication :
2020-09-16
ISSN :
0036-1429
Mot(s)-clé(s) en anglais :
Finite volume methods
Long-time behavior
Entropy methods
Discrete functional inequalities
Logarithmic Sobolev inequalities
Long-time behavior
Entropy methods
Discrete functional inequalities
Logarithmic Sobolev inequalities
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
In this contribution we analyze the large time behavior of a family of nonlinear finite volume schemes for anisotropic convection-diffusion equations set in a bounded bidimensional domain and endowed with either Dirichlet ...
Lire la suite >In this contribution we analyze the large time behavior of a family of nonlinear finite volume schemes for anisotropic convection-diffusion equations set in a bounded bidimensional domain and endowed with either Dirichlet and / or no-flux boundary conditions. We show that solutions to the two-point flux approximation (TPFA) and discrete duality finite volume (DDFV) schemes under consideration converge exponentially fast toward their steady state. The analysis relies on discrete entropy estimates and discrete functional inequalities. As a biproduct of our analysis, we establish new discrete Poincaré-Wirtinger, Beckner and logarithmic Sobolev inequalities. Our theoretical results are illustrated by numerical simulations.Lire moins >
Lire la suite >In this contribution we analyze the large time behavior of a family of nonlinear finite volume schemes for anisotropic convection-diffusion equations set in a bounded bidimensional domain and endowed with either Dirichlet and / or no-flux boundary conditions. We show that solutions to the two-point flux approximation (TPFA) and discrete duality finite volume (DDFV) schemes under consideration converge exponentially fast toward their steady state. The analysis relies on discrete entropy estimates and discrete functional inequalities. As a biproduct of our analysis, we establish new discrete Poincaré-Wirtinger, Beckner and logarithmic Sobolev inequalities. Our theoretical results are illustrated by numerical simulations.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- paper.pdf
- Accès libre
- Accéder au document
- 1911.04962
- Accès libre
- Accéder au document