Segmentation in the mean of heteroscedastic ...
Type de document :
Communication dans un congrès avec actes
Titre :
Segmentation in the mean of heteroscedastic data via resampling or cross-validation
Auteur(s) :
Celisse, Alain [Auteur]
Université de Lille, Sciences et Technologies
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Mathématiques et Informatique Appliquées [MIA-Paris]
Arlot, Sylvain [Auteur]
École normale supérieure - Cachan [ENS Cachan]
Laboratoire d'informatique de l'école normale supérieure [LIENS]

Université de Lille, Sciences et Technologies
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Mathématiques et Informatique Appliquées [MIA-Paris]
Arlot, Sylvain [Auteur]
École normale supérieure - Cachan [ENS Cachan]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
Titre de la manifestation scientifique :
Workshop Change-Point Detection Methods and Applications
Ville :
Paris
Pays :
France
Date de début de la manifestation scientifique :
2008-09-11
Date de publication :
2010
Mot(s)-clé(s) :
hétéroscédastique
point de modification
point de modification
Mot(s)-clé(s) en anglais :
change-point detection
resampling
cross-validation
model selection
heteroscedastic data
cgh profile segmentation
resampling
cross-validation
model selection
heteroscedastic data
cgh profile segmentation
Discipline(s) HAL :
Mathématiques [math]
Informatique [cs]
Informatique [cs]
Résumé en anglais : [en]
This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is ...
Lire la suite >This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is proposed, showing that cross-validation methods can be successful in the heteroscedastic framework, whereas most existing procedures are not robust to heteroscedasticity. The robustness to heteroscedasticity of the proposed procedures is supported by an extensive simulation study, together with recent partial theoretical results. An application to Comparative Genomic Hybridization (CGH) data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.Lire moins >
Lire la suite >This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is proposed, showing that cross-validation methods can be successful in the heteroscedastic framework, whereas most existing procedures are not robust to heteroscedasticity. The robustness to heteroscedasticity of the proposed procedures is supported by an extensive simulation study, together with recent partial theoretical results. An application to Comparative Genomic Hybridization (CGH) data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Nationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- 158250_20120312114058838_1.pdf
- Accès libre
- Accéder au document