A finite volume method for a convection- ...
Document type :
Communication dans un congrès avec actes
Title :
A finite volume method for a convection- diffusion equation involving a Joule term
Author(s) :
Calgaro, Caterina [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Creusé, Emmanuel [Auteur]
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 [LAMAV]
Reliable numerical approximations of dissipative systems [RAPSODI]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Creusé, Emmanuel [Auteur]
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 [LAMAV]
Reliable numerical approximations of dissipative systems [RAPSODI]
Scientific editor(s) :
Springer
Conference title :
International Conference on Finite Volumes for Complex Applications IX
City :
Bergen
Country :
Norvège
Start date of the conference :
2020-06-15
Journal title :
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples
Publication date :
2020
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Analyse numérique [math.NA]
English abstract : [en]
This work is devoted to a Finite Volume method to approximate the solution of a convection-diffusion equation involving a Joule term. We propose a way 5 to discretize this so-called "Joule effect" term in a consistent way ...
Show more >This work is devoted to a Finite Volume method to approximate the solution of a convection-diffusion equation involving a Joule term. We propose a way 5 to discretize this so-called "Joule effect" term in a consistent way with the non linear diffusion one, in order to ensure some maximum principle properties on the solution. We then investigate the numerical behavior of the scheme on two original benchmarks.Show less >
Show more >This work is devoted to a Finite Volume method to approximate the solution of a convection-diffusion equation involving a Joule term. We propose a way 5 to discretize this so-called "Joule effect" term in a consistent way with the non linear diffusion one, in order to ensure some maximum principle properties on the solution. We then investigate the numerical behavior of the scheme on two original benchmarks.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- PaperCCEC-FVCA9-hal.pdf
- Open access
- Access the document
- PaperCCEC-FVCA9-hal.pdf
- Open access
- Access the document