Convergence of a Degenerate Microscopic ...
Type de document :
Pré-publication ou Document de travail
Titre :
Convergence of a Degenerate Microscopic Dynamics to the Porous Medium Equation
Auteur(s) :
Blondel, Oriane [Auteur]
Probabilités, statistique, physique mathématique [PSPM]
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Sasada, Makiko [Auteur]
Graduate School of Mathematical Sciences[Tokyo]
Simon, Marielle [Auteur]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Probabilités, statistique, physique mathématique [PSPM]
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Sasada, Makiko [Auteur]
Graduate School of Mathematical Sciences[Tokyo]
Simon, Marielle [Auteur]

Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Éditeur :
Association des Annales de l'Institut Fourier
Date de publication :
2019
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Physique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Physique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
Résumé en anglais : [en]
We derive the porous medium equation from an interacting particle system which belongs to the family of exclusion processes, with nearest neighbor exchanges. The particles follow a degenerate dynamics, in the sense that ...
Lire la suite >We derive the porous medium equation from an interacting particle system which belongs to the family of exclusion processes, with nearest neighbor exchanges. The particles follow a degenerate dynamics, in the sense that the jump rates can vanish for certain configurations, and there exist blocked configurations that cannot evolve. In [7] it was proved that the macroscopic density profile in the hydrodynamic limit is governed by the porous medium equation (PME), for initial densities uniformly bounded away from 0 and 1. In this paper we consider the more general case where the density can take those extreme values. In this context, the PME solutions display a richer behavior, like moving interfaces, finite speed of propagation and breaking of regularity. As a consequence, the standard techniques that are commonly used to prove this hydrodynamic limits cannot be straightforwardly applied to our case. We present here a way to generalize the relative entropy method, by involving approximations of solutions to the hydrodynamic equation, instead of exact solutions.Lire moins >
Lire la suite >We derive the porous medium equation from an interacting particle system which belongs to the family of exclusion processes, with nearest neighbor exchanges. The particles follow a degenerate dynamics, in the sense that the jump rates can vanish for certain configurations, and there exist blocked configurations that cannot evolve. In [7] it was proved that the macroscopic density profile in the hydrodynamic limit is governed by the porous medium equation (PME), for initial densities uniformly bounded away from 0 and 1. In this paper we consider the more general case where the density can take those extreme values. In this context, the PME solutions display a richer behavior, like moving interfaces, finite speed of propagation and breaking of regularity. As a consequence, the standard techniques that are commonly used to prove this hydrodynamic limits cannot be straightforwardly applied to our case. We present here a way to generalize the relative entropy method, by involving approximations of solutions to the hydrodynamic equation, instead of exact solutions.Lire moins >
Langue :
Anglais
Projet ANR :
Modèles stochastiques en grande dimension pour la physique statistique hors équilibre
Centre Européen pour les Mathématiques, la Physique et leurs Interactions
Approche géométrique pour les écoulements en milieux poreux: théorie et numérique
Community of mathematics and fundamental computer science in Lyon
Marches aléatoires en interaction
Diffusion de l'énergie dans des systèmes hamiltoniens bruitésés
Centre Européen pour les Mathématiques, la Physique et leurs Interactions
Approche géométrique pour les écoulements en milieux poreux: théorie et numérique
Community of mathematics and fundamental computer science in Lyon
Marches aléatoires en interaction
Diffusion de l'énergie dans des systèmes hamiltoniens bruitésés
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- PME_BlondelCancesSasadaSimon-corrections.pdf
- Accès libre
- Accéder au document