Derivation of the stochastic Burgers ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Derivation of the stochastic Burgers equation with Dirichlet boundary conditions from the WASEP
Auteur(s) :
Gonçalves, Patricia [Auteur]
Instituto Superior Técnico [IST / Técnico Lisboa]
Perkowski, Nicolas [Auteur]
Institut für Mathematik [Humboldt]
Simon, Marielle [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Instituto Superior Técnico [IST / Técnico Lisboa]
Perkowski, Nicolas [Auteur]
Institut für Mathematik [Humboldt]
Simon, Marielle [Auteur]

Systèmes de particules et systèmes dynamiques [Paradyse]
Titre de la revue :
Annales Henri Lebesgue
Éditeur :
UFR de Mathématiques - IRMAR
Date de publication :
2020
ISSN :
2644-9463
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Physique mathématique [math-ph]
Résumé en anglais : [en]
We consider the weakly asymmetric simple exclusion process on the discrete space $\{1,...,n-1\}$, in contact with stochastic reservoirs, both with density $\rho\in{(0,1)}$ at the extremity points, and starting from the ...
Lire la suite >We consider the weakly asymmetric simple exclusion process on the discrete space $\{1,...,n-1\}$, in contact with stochastic reservoirs, both with density $\rho\in{(0,1)}$ at the extremity points, and starting from the invariant state, namely the Bernoulli product measure of parameter $\rho$. Under time diffusive scaling $tn^2$ and for $\rho=\frac12$, when the asymmetry parameter is taken of order $1/ \sqrt n$, we prove that the density fluctuations at stationarity are macroscopically governed by the energy solution of the stochastic Burgers equation with Dirichlet boundary conditions, which is shown to be unique and different from the Cole-Hopf solution.Lire moins >
Lire la suite >We consider the weakly asymmetric simple exclusion process on the discrete space $\{1,...,n-1\}$, in contact with stochastic reservoirs, both with density $\rho\in{(0,1)}$ at the extremity points, and starting from the invariant state, namely the Bernoulli product measure of parameter $\rho$. Under time diffusive scaling $tn^2$ and for $\rho=\frac12$, when the asymmetry parameter is taken of order $1/ \sqrt n$, we prove that the density fluctuations at stationarity are macroscopically governed by the energy solution of the stochastic Burgers equation with Dirichlet boundary conditions, which is shown to be unique and different from the Cole-Hopf solution.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Commentaire :
69 pages
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- SBE_DBC_AHL_corrections-black.pdf
- Accès libre
- Accéder au document
- 1710.11011
- Accès libre
- Accéder au document