Quantitative uniqueness for Schrödinger ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Quantitative uniqueness for Schrödinger operator with regular potentials
Auteur(s) :
Bakri, Laurent [Auteur]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Casteras, Jean-Baptiste [Auteur]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Casteras, Jean-Baptiste [Auteur]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Titre de la revue :
Mathematical Methods in the Applied Sciences
Pagination :
1992-2008
Éditeur :
Wiley
Date de publication :
2014-07
ISSN :
0170-4214
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We give a sharp upper bound on the vanishing order of solutions to Schrödinger equation with C 1 magnetic potential on a compact smooth manifold. Our method is based on quantitative Carleman type inequalities developed by ...
Lire la suite >We give a sharp upper bound on the vanishing order of solutions to Schrödinger equation with C 1 magnetic potential on a compact smooth manifold. Our method is based on quantitative Carleman type inequalities developed by Donnelly and Fefferman [4]. It also extends the previous work [3] of the first author to the magnetic potential case.Lire moins >
Lire la suite >We give a sharp upper bound on the vanishing order of solutions to Schrödinger equation with C 1 magnetic potential on a compact smooth manifold. Our method is based on quantitative Carleman type inequalities developed by Donnelly and Fefferman [4]. It also extends the previous work [3] of the first author to the magnetic potential case.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- schromagnetique9b.pdf
- Accès libre
- Accéder au document
- 1203.3720
- Accès libre
- Accéder au document