Strong identifiability and optimal minimax ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Strong identifiability and optimal minimax rates for finite mixture estimation
Auteur(s) :
Heinrich, Philippe [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Kahn, Jonas [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Kahn, Jonas [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Annals of Statistics
Pagination :
2844-2870
Éditeur :
Institute of Mathematical Statistics
Date de publication :
2018-12
ISSN :
0090-5364
Mot(s)-clé(s) en anglais :
strong identifiability.
rate of convergence
mixture model
mixing distribution
Wasserstein metric
maximum likelihood estimate
convergence of experiments
Local asymptotic normality
rate of convergence
mixture model
mixing distribution
Wasserstein metric
maximum likelihood estimate
convergence of experiments
Local asymptotic normality
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Résumé en anglais : [en]
We prove that under some regularity and strong iden-tifiability conditions, around a mixing distribution with $m_0$ components, the optimal local minimax rate of estimation of a mixture with $m$ components is $n^{−1/(4(m−m ...
Lire la suite >We prove that under some regularity and strong iden-tifiability conditions, around a mixing distribution with $m_0$ components, the optimal local minimax rate of estimation of a mixture with $m$ components is $n^{−1/(4(m−m 0)+2)}$. This corrects a previous paper by Chen (1995) in The Annals of Statistics.Lire moins >
Lire la suite >We prove that under some regularity and strong iden-tifiability conditions, around a mixing distribution with $m_0$ components, the optimal local minimax rate of estimation of a mixture with $m$ components is $n^{−1/(4(m−m 0)+2)}$. This corrects a previous paper by Chen (1995) in The Annals of Statistics.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T17:20:39Z
Fichiers
- document
- Accès libre
- Accéder au document
- papierAOSv18.pdf
- Accès libre
- Accéder au document
- SuppAOSv18.pdf
- Accès libre
- Accéder au document
- 1504.03506
- Accès libre
- Accéder au document