Approximation by an iterative method of a ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Approximation by an iterative method of a low Mach model with temperature dependent viscosity
Auteur(s) :
Calgaro, Caterina [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Colin, Claire [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Creusé, Emmanuel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Zahrouni, Ezzeddine [Auteur]
Faculté des Sciences Economiques et de Gestion [FSEGN]
Département de Mathématiques [Monastir]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Colin, Claire [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Creusé, Emmanuel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Zahrouni, Ezzeddine [Auteur]
Faculté des Sciences Economiques et de Gestion [FSEGN]
Département de Mathématiques [Monastir]
Titre de la revue :
Mathematical Methods in the Applied Sciences
Pagination :
250-271
Éditeur :
Wiley
Date de publication :
2019
ISSN :
0170-4214
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
In this work, we prove the existence and the uniqueness of the strong solution of a low-Mach model, for which the dynamic viscosity of the fluid is a given function of its temperature. The method is based on the convergence ...
Lire la suite >In this work, we prove the existence and the uniqueness of the strong solution of a low-Mach model, for which the dynamic viscosity of the fluid is a given function of its temperature. The method is based on the convergence study of a sequence towards the solution, for which the rates are also given. The originality of the approach is to consider the system in terms of the temperature and the velocity, leading to a non-linear temperature equation and the development of some specific tools and results.Lire moins >
Lire la suite >In this work, we prove the existence and the uniqueness of the strong solution of a low-Mach model, for which the dynamic viscosity of the fluid is a given function of its temperature. The method is based on the convergence study of a sequence towards the solution, for which the rates are also given. The originality of the approach is to consider the system in terms of the temperature and the velocity, leading to a non-linear temperature equation and the development of some specific tools and results.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- CCCZ-2018-05-28-HAL.pdf
- Accès libre
- Accéder au document
- CCCZ-2018-05-28-HAL.pdf
- Accès libre
- Accéder au document