• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spectral analysis of Morse-Smale gradient flows
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.24033/asens.2412
Title :
Spectral analysis of Morse-Smale gradient flows
Author(s) :
Dang, Nguyen Viet [Auteur]
Institut Camille Jordan [ICJ]
Probabilités, statistique, physique mathématique [PSPM]
Riviere, Gabriel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Annales Scientifiques de l'École Normale Supérieure
Publisher :
Société mathématique de France
Publication date :
2019
ISSN :
0012-9593
English keyword(s) :
Morse theory
gradient flow
resonances
transfer operator
differential topology
HAL domain(s) :
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Topologie géométrique [math.GT]
Mathématiques [math]/Théorie spectrale [math.SP]
English abstract : [en]
On a smooth, compact and oriented manifold without boundary, we give a complete description of the correlation function of a Morse-Smale gradient flow satisfying a certain nonresonance assumption. This is done by analyzing ...
Show more >
On a smooth, compact and oriented manifold without boundary, we give a complete description of the correlation function of a Morse-Smale gradient flow satisfying a certain nonresonance assumption. This is done by analyzing precisely the spectrum of the generator of such a flow acting on certain anisotropic spaces of currents. In particular, we prove that this dynamical spectrum is given by linear combinations with integer coefficients of the Lyapunov exponents at the critical points of the Morse function. Via this spectral analysis and in analogy with Hodge-de Rham theory, we give an interpretation of the Morse complex as the image of the de Rham complex under the spectral projector on the kernel of the generator of the flow. This allows us to recover classical results from differential topology such as the Morse inequalities and Poincaré duality.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Phénomènes de diffusion et de propagation près des horizons d'espace-temps
Comment :
Shortened version (56 p.), to appear in Annales Sci. ENS
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • Dang-Riviere-gradient-flow-2018.pdf
  • Open access
  • Access the document
Thumbnail
  • 1605.05516
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017