Construction of multi-bubble solutions for ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Construction of multi-bubble solutions for the critical gKdV equation
Auteur(s) :
Combet, Vianney [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Martel, Yvan [Auteur]
Centre de Mathématiques Laurent Schwartz [CMLS]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Martel, Yvan [Auteur]
Centre de Mathématiques Laurent Schwartz [CMLS]
Titre de la revue :
SIAM Journal on Mathematical Analysis
Pagination :
3715-3790
Éditeur :
Society for Industrial and Applied Mathematics
Date de publication :
2018
ISSN :
0036-1410
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We prove the existence of solutions of the mass critical generalized Korteweg-de Vries equation $\partial_t u + \partial_x(\partial_{xx} u + u^5) = 0$ containing an arbitrary number $K\geq 2$ of blow up bubbles, for any ...
Lire la suite >We prove the existence of solutions of the mass critical generalized Korteweg-de Vries equation $\partial_t u + \partial_x(\partial_{xx} u + u^5) = 0$ containing an arbitrary number $K\geq 2$ of blow up bubbles, for any choice of sign and scaling parameters: for any $\ell_1>\ell_2>\cdots>\ell_K>0$ and $\epsilon_1,\ldots,\epsilon_K\in\{\pm1\}$, there exists an $H^1$ solution $u$ of the equation such that \[ u(t) - \sum_{k=1}^K \frac {\epsilon_k}{\lambda_k^\frac12(t)} Q\left( \frac {\cdot - x_k(t)}{\lambda_k(t)} \right) \longrightarrow 0 \quad\mbox{ in }\ H^1 \mbox{ as }\ t\downarrow 0, \] with $\lambda_k(t)\sim \ell_k t$ and $x_k(t)\sim -\ell_k^{-2}t^{-1}$ as $t\downarrow 0$. The construction uses and extends techniques developed mainly by Martel, Merle and Rapha\"el. Due to strong interactions between the bubbles, it also relies decisively on the sharp properties of the minimal mass blow up solution (single bubble case) proved by the authors in arXiv:1602.03519.Lire moins >
Lire la suite >We prove the existence of solutions of the mass critical generalized Korteweg-de Vries equation $\partial_t u + \partial_x(\partial_{xx} u + u^5) = 0$ containing an arbitrary number $K\geq 2$ of blow up bubbles, for any choice of sign and scaling parameters: for any $\ell_1>\ell_2>\cdots>\ell_K>0$ and $\epsilon_1,\ldots,\epsilon_K\in\{\pm1\}$, there exists an $H^1$ solution $u$ of the equation such that \[ u(t) - \sum_{k=1}^K \frac {\epsilon_k}{\lambda_k^\frac12(t)} Q\left( \frac {\cdot - x_k(t)}{\lambda_k(t)} \right) \longrightarrow 0 \quad\mbox{ in }\ H^1 \mbox{ as }\ t\downarrow 0, \] with $\lambda_k(t)\sim \ell_k t$ and $x_k(t)\sim -\ell_k^{-2}t^{-1}$ as $t\downarrow 0$. The construction uses and extends techniques developed mainly by Martel, Merle and Rapha\"el. Due to strong interactions between the bubbles, it also relies decisively on the sharp properties of the minimal mass blow up solution (single bubble case) proved by the authors in arXiv:1602.03519.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
70 pages
Collections :
Source :
Fichiers
- 1706.09870
- Accès libre
- Accéder au document