Adaptive wavelet multivariate regression ...
Document type :
Article dans une revue scientifique: Article original
Title :
Adaptive wavelet multivariate regression with errors in variables
Author(s) :
Chichignoud, Michaël [Auteur]
Seminar for Statistics [ETH Zürich] [SfS]
Hoang, van Ha [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Pham Ngoc, Thanh Mai [Auteur]
Laboratoire de Mathématiques d'Orsay [LMO]
Rivoirard, Vincent [Auteur]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Seminar for Statistics [ETH Zürich] [SfS]
Hoang, van Ha [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Pham Ngoc, Thanh Mai [Auteur]
Laboratoire de Mathématiques d'Orsay [LMO]
Rivoirard, Vincent [Auteur]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Journal title :
Electronic Journal of Statistics
Pages :
682-724
Publisher :
Shaker Heights, OH : Institute of Mathematical Statistics
Publication date :
2017-03-09
ISSN :
1935-7524
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
English abstract : [en]
In the multidimensional setting, we consider the errors-in-variables model. We aim at estimating the unknown nonparametric multivariate regression function with errors in the covariates. We devise an adaptive estimator ...
Show more >In the multidimensional setting, we consider the errors-in-variables model. We aim at estimating the unknown nonparametric multivariate regression function with errors in the covariates. We devise an adaptive estimator based on projection kernels on wavelets and a deconvolution operator. We propose an automatic and fully data driven procedure to select the wavelet level resolution. We obtain an oracle inequality and optimal rates of convergence over anisotropic Hölder classes. Our theoretical results are illustrated by some simulations.Show less >
Show more >In the multidimensional setting, we consider the errors-in-variables model. We aim at estimating the unknown nonparametric multivariate regression function with errors in the covariates. We devise an adaptive estimator based on projection kernels on wavelets and a deconvolution operator. We propose an automatic and fully data driven procedure to select the wavelet level resolution. We obtain an oracle inequality and optimal rates of convergence over anisotropic Hölder classes. Our theoretical results are illustrated by some simulations.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- document
- Open access
- Access the document
- euclid.ejs.1488964114.pdf
- Open access
- Access the document
- 1601.02762
- Open access
- Access the document