Deformation rings and parabolic induction
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Deformation rings and parabolic induction
Auteur(s) :
Hauseux, Julien [Auteur correspondant]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Schmidt, Tobias [Auteur]
Institut de Recherche Mathématique de Rennes [IRMAR]
Sorensen, Claus [Auteur]
Department of Mathematics [Univ California San Diego] [MATH - UC San Diego]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Schmidt, Tobias [Auteur]
Institut de Recherche Mathématique de Rennes [IRMAR]
Sorensen, Claus [Auteur]
Department of Mathematics [Univ California San Diego] [MATH - UC San Diego]
Titre de la revue :
Journal de Théorie des Nombres de Bordeaux
Pagination :
695-727
Éditeur :
Société Arithmétique de Bordeaux
Date de publication :
2018-12-06
ISSN :
2118-8572
Mot(s)-clé(s) en anglais :
p-adic reductive groups
smooth representations
m-adically continuous representations
parabolic induction
deformations
smooth representations
m-adically continuous representations
parabolic induction
deformations
Discipline(s) HAL :
Mathématiques [math]/Théorie des représentations [math.RT]
Mathématiques [math]/Théorie des nombres [math.NT]
Mathématiques [math]/Théorie des nombres [math.NT]
Résumé en anglais : [en]
We study deformations of smooth mod $p$ representations (and their duals) of a $p$-adic reductive group $G$. Under some mild genericity condition, we prove that parabolic induction with respect to a parabolic subgroup ...
Lire la suite >We study deformations of smooth mod $p$ representations (and their duals) of a $p$-adic reductive group $G$. Under some mild genericity condition, we prove that parabolic induction with respect to a parabolic subgroup $P=LN$ defines an isomorphism between the universal deformation rings of a supersingular representation $\bar{\sigma}$ of $L$ and of its parabolic induction $\bar{\pi}$. As a consequence, we show that every Banach lift of $\bar{\pi}$ is induced from a unique Banach lift of $\bar{\sigma}$.Lire moins >
Lire la suite >We study deformations of smooth mod $p$ representations (and their duals) of a $p$-adic reductive group $G$. Under some mild genericity condition, we prove that parabolic induction with respect to a parabolic subgroup $P=LN$ defines an isomorphism between the universal deformation rings of a supersingular representation $\bar{\sigma}$ of $L$ and of its parabolic induction $\bar{\pi}$. As a consequence, we show that every Banach lift of $\bar{\pi}$ is induced from a unique Banach lift of $\bar{\sigma}$.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- 1607.02602
- Accès libre
- Accéder au document