Residual equilibrium schemes for time ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Residual equilibrium schemes for time dependent partial differential equations
Auteur(s) :
Pareschi, Lorenzo [Auteur]
Dipartimento di Matematica e Informatica = Department of Mathematics and Computer Science [Ferrara] [DMCS]
Rey, Thomas [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Dipartimento di Matematica e Informatica = Department of Mathematics and Computer Science [Ferrara] [DMCS]
Rey, Thomas [Auteur]

Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Computers and Fluids
Éditeur :
Elsevier
Date de publication :
2017-10-12
ISSN :
0045-7930
Mot(s)-clé(s) en anglais :
shallow-water
steady-states preserving
well-balanced schemes
Fokker-Planck equations
micro-macro decomposition
steady-states preserving
well-balanced schemes
Fokker-Planck equations
micro-macro decomposition
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
Many applications involve partial differential equations which admits nontrivial steady state solutions. The design of schemes which are able to describe correctly these equilibrium states may be challenging for numerical ...
Lire la suite >Many applications involve partial differential equations which admits nontrivial steady state solutions. The design of schemes which are able to describe correctly these equilibrium states may be challenging for numerical methods, in particular for high order ones. In this paper, inspired by micro-macro decomposition methods for kinetic equations, we present a class of schemes which are capable to preserve the steady state solution and achieve high order accuracy for a class of time dependent partial differential equations including nonlinear diffusion equations and kinetic equations. Extension to systems of conservation laws with source terms are also discussed.Lire moins >
Lire la suite >Many applications involve partial differential equations which admits nontrivial steady state solutions. The design of schemes which are able to describe correctly these equilibrium states may be challenging for numerical methods, in particular for high order ones. In this paper, inspired by micro-macro decomposition methods for kinetic equations, we present a class of schemes which are capable to preserve the steady state solution and achieve high order accuracy for a class of time dependent partial differential equations including nonlinear diffusion equations and kinetic equations. Extension to systems of conservation laws with source terms are also discussed.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
23 pages, 12 figures
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Residual_final.pdf
- Accès libre
- Accéder au document
- 1602.02711
- Accès libre
- Accéder au document