Perturbation of the semiclassical Schrödinger ...
Type de document :
Pré-publication ou Document de travail
URL permanente :
Titre :
Perturbation of the semiclassical Schrödinger equation on negatively curved surfaces
Auteur(s) :
Eswarathasan, Suresh [Auteur]
Institut des Hautes Études Scientifiques [IHES]
Riviere, Gabriel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institut des Hautes Études Scientifiques [IHES]
Riviere, Gabriel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Mot(s)-clé(s) en anglais :
semiclassical analysis
hyperbolic dynamical systems
quantum chaos
hyperbolic dynamical systems
quantum chaos
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Physique mathématique [math-ph]
Résumé en anglais : [en]
We consider the semiclassical Schrödinger equation on a compact negatively curved surface. For any sequence of initial data microlocalized on the unit cotangent bundle, we look at the quantum evolution (below the Ehrenfest ...
Lire la suite >We consider the semiclassical Schrödinger equation on a compact negatively curved surface. For any sequence of initial data microlocalized on the unit cotangent bundle, we look at the quantum evolution (below the Ehrenfest time) under small perturbations of the Schrödinger equation, and we prove that, in the semiclassical limit and for typical perturbations, the solutions become equidistributed on the unit cotangent bundle.Lire moins >
Lire la suite >We consider the semiclassical Schrödinger equation on a compact negatively curved surface. For any sequence of initial data microlocalized on the unit cotangent bundle, we look at the quantum evolution (below the Ehrenfest time) under small perturbations of the Schrödinger equation, and we prove that, in the semiclassical limit and for typical perturbations, the solutions become equidistributed on the unit cotangent bundle.Lire moins >
Langue :
Anglais
Commentaire :
48 pages. Compared with version 1, we consider slightly different families of perturbations in order to simplify the exposition.
Collections :
Source :
Date de dépôt :
2025-01-24T18:27:14Z
Fichiers
- document
- Accès libre
- Accéder au document
- EswRiv2015.pdf
- Accès libre
- Accéder au document
- 1405.3231
- Accès libre
- Accéder au document