Probabilistic Auto-Associative Models and ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Probabilistic Auto-Associative Models and Semi-Linear PCA
Auteur(s) :
Iovleff, Serge [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Laboratoire Paul Painlevé - UMR 8524 [LPP]

MOdel for Data Analysis and Learning [MODAL]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Advances in Data Analysis and Classification
Pagination :
20
Éditeur :
Springer Verlag
Date de publication :
2015-09
ISSN :
1862-5347
Mot(s)-clé(s) en anglais :
Auto-Associative Models
Data Analysis
Non-Linear PCA
Data Analysis
Non-Linear PCA
Discipline(s) HAL :
Statistiques [stat]/Applications [stat.AP]
Statistiques [stat]/Machine Learning [stat.ML]
Statistiques [stat]/Machine Learning [stat.ML]
Résumé en anglais : [en]
Auto-Associative models cover a large class of methods used in data analysis. In this paper, we describe the generals properties of these models when the projection component is linear and we propose and test an easy to ...
Lire la suite >Auto-Associative models cover a large class of methods used in data analysis. In this paper, we describe the generals properties of these models when the projection component is linear and we propose and test an easy to implement Probabilistic Semi-Linear Auto- Associative model in a Gaussian setting. We show it is a generalization of the PCA model to the semi-linear case. Numerical experiments on simulated datasets and a real astronomical application highlight the interest of this approachLire moins >
Lire la suite >Auto-Associative models cover a large class of methods used in data analysis. In this paper, we describe the generals properties of these models when the projection component is linear and we propose and test an easy to implement Probabilistic Semi-Linear Auto- Associative model in a Gaussian setting. We show it is a generalization of the PCA model to the semi-linear case. Numerical experiments on simulated datasets and a real astronomical application highlight the interest of this approachLire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- aam-article-v2.pdf
- Accès libre
- Accéder au document
- 1209.4551
- Accès libre
- Accéder au document