The local reduced minimum modulus on a ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
The local reduced minimum modulus on a Hilbert space
Auteur(s) :
Titre de la revue :
Acta Scientiarum Mathematicarum
Pagination :
269-292
Éditeur :
Springer / Acta Universitatis Szegediensis
Date de publication :
2023-02-27
ISSN :
0001-6969
Mot(s)-clé(s) en anglais :
Reduced minimum modulus, Strength function, Moore–Penrose inverse, Partial isometry.
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
Let H be a complex Hilbert space and let B(H) be the algebraof all bounded linear operators on H. In this paper, for T ∈ B(H) and aunit vector x ∈ H, we introduce a local version of the reduced minimummodulus of T at x, ...
Lire la suite >Let H be a complex Hilbert space and let B(H) be the algebraof all bounded linear operators on H. In this paper, for T ∈ B(H) and aunit vector x ∈ H, we introduce a local version of the reduced minimummodulus of T at x, noted by γ(T, x). Properties of this quantity areinvestigated. We study the relations between γ(T, x) and the Moore–Penrose inverse, spectrum of |T| and the local spectrum of |T| at x. Atthe end of this paper we will be interested in several problems aroundthis quantity (preserving, continuity, local spectral theory).Lire moins >
Lire la suite >Let H be a complex Hilbert space and let B(H) be the algebraof all bounded linear operators on H. In this paper, for T ∈ B(H) and aunit vector x ∈ H, we introduce a local version of the reduced minimummodulus of T at x, noted by γ(T, x). Properties of this quantity areinvestigated. We study the relations between γ(T, x) and the Moore–Penrose inverse, spectrum of |T| and the local spectrum of |T| at x. Atthe end of this paper we will be interested in several problems aroundthis quantity (preserving, continuity, local spectral theory).Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-02-21T06:53:21Z