Semiparametrically Efficient Estimation ...
Type de document :
Pré-publication ou Document de travail
URL permanente :
Titre :
Semiparametrically Efficient Estimation of Linear Regression Models with Spillovers
Auteur(s) :
Debarsy, Nicolas [Auteur]
Lille économie management - UMR 9221 [LEM]
Verardi, Vincenzo [Auteur]
Vermandele, Catherine [Auteur]

Lille économie management - UMR 9221 [LEM]
Verardi, Vincenzo [Auteur]
Vermandele, Catherine [Auteur]
Mot(s)-clé(s) en anglais :
Spillovers
Efficiency
Local Asymptotic Normality
Semiparametric estimation
Efficiency
Local Asymptotic Normality
Semiparametric estimation
Discipline(s) HAL :
Économie et finance quantitative [q-fin]
Statistiques [stat]/Méthodologie [stat.ME]
Statistiques [stat]/Méthodologie [stat.ME]
Résumé en anglais : [en]
Linear regression models with spillover effects generally cannot be estimated using ordinary least squares given the simultaneity that results from interactions among individuals. Instead, they are fitted using two-stage ...
Lire la suite >Linear regression models with spillover effects generally cannot be estimated using ordinary least squares given the simultaneity that results from interactions among individuals. Instead, they are fitted using two-stage least squares (Kelejian and Prucha, 1998; Bramoullé et al., 2009), generalized method of moments (Liu et al., 2010), (quasi-) maximum likelihood typically under the normality assumption (Lee, 2004) or adaptive estimation (Robinson, 2010). In this article, we propose a semiparametrically efficient estimator, based on the Local Asymptotic Normality theory of Le Cam (1960) and on the work of Hallin et al. (2006, 2008) on residuals ranks-and-signs, that only requires strong unimodality of errors' distribution as a distributional assumption. Monte Carlo simulations show that the suggested estimator performs well in comparison to competing estimators. A trade regression from Behrens et al. ( 2012) is used to illustrate how empirical findings might greatly change when the Gaussian distribution is not imposed.Lire moins >
Lire la suite >Linear regression models with spillover effects generally cannot be estimated using ordinary least squares given the simultaneity that results from interactions among individuals. Instead, they are fitted using two-stage least squares (Kelejian and Prucha, 1998; Bramoullé et al., 2009), generalized method of moments (Liu et al., 2010), (quasi-) maximum likelihood typically under the normality assumption (Lee, 2004) or adaptive estimation (Robinson, 2010). In this article, we propose a semiparametrically efficient estimator, based on the Local Asymptotic Normality theory of Le Cam (1960) and on the work of Hallin et al. (2006, 2008) on residuals ranks-and-signs, that only requires strong unimodality of errors' distribution as a distributional assumption. Monte Carlo simulations show that the suggested estimator performs well in comparison to competing estimators. A trade regression from Behrens et al. ( 2012) is used to illustrate how empirical findings might greatly change when the Gaussian distribution is not imposed.Lire moins >
Langue :
Anglais
Collections :
Source :
Date de dépôt :
2025-02-22T03:04:26Z
Fichiers
- document
- Accès libre
- Accéder au document
- Paper_DVV.pdf
- Accès libre
- Accéder au document