An In-Cell Weight Update Scheme Using ...
Type de document :
Communication dans un congrès avec actes
URL permanente :
Titre :
An In-Cell Weight Update Scheme Using One-Hot Gradients for On-Chip Learning
Auteur(s) :
Chêne, Mathieu [Auteur]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Centrale Lille
JUNIA [JUNIA]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Larras, Benoit [Auteur]
JUNIA [JUNIA]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Kaiser, Andreas [Auteur]
JUNIA [JUNIA]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Frappe, Antoine [Auteur]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
JUNIA [JUNIA]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Centrale Lille
JUNIA [JUNIA]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Larras, Benoit [Auteur]

JUNIA [JUNIA]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Kaiser, Andreas [Auteur]

JUNIA [JUNIA]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Frappe, Antoine [Auteur]

Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
JUNIA [JUNIA]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la manifestation scientifique :
2024 31st IEEE International Conference on Electronics, Circuits and Systems (ICECS)
Ville :
Nancy
Pays :
France
Date de début de la manifestation scientifique :
2024-11-18
Éditeur :
IEEE
Discipline(s) HAL :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
In the context of edge AI, the embedded models need to be retrained on-chip. The more the backward path and the calculation the gradient (two important steps during learning) are optimized by literature, the more it becomes ...
Lire la suite >In the context of edge AI, the embedded models need to be retrained on-chip. The more the backward path and the calculation the gradient (two important steps during learning) are optimized by literature, the more it becomes interesting to optimize weight update operation. This work proposes to encode the weight update gradient as a power of two. It is shown that this encoding method has a low impact on the learning capability for neural network configurations and it reduces the amount of weight update operations during training by a factor of 12.5 in the case of a feedforward neural network and by a factor of 9.5 in the case of a convolutional configuration. It is also compatible with transfer learning approaches. In addition, using in-memory computing, it is possible to get rid of the read operation required for the weight update operation and to reduce the amount of writing operation by 8, thereby reducing further the energy required for a weight update by another factor of 13.7. Finally considering the reduction of energy needed per update and the reduction of update operation done during training process, the energy needed for weight update can be reduced by 137 in the case of a convolutional architecture.Lire moins >
Lire la suite >In the context of edge AI, the embedded models need to be retrained on-chip. The more the backward path and the calculation the gradient (two important steps during learning) are optimized by literature, the more it becomes interesting to optimize weight update operation. This work proposes to encode the weight update gradient as a power of two. It is shown that this encoding method has a low impact on the learning capability for neural network configurations and it reduces the amount of weight update operations during training by a factor of 12.5 in the case of a feedforward neural network and by a factor of 9.5 in the case of a convolutional configuration. It is also compatible with transfer learning approaches. In addition, using in-memory computing, it is possible to get rid of the read operation required for the weight update operation and to reduce the amount of writing operation by 8, thereby reducing further the energy required for a weight update by another factor of 13.7. Finally considering the reduction of energy needed per update and the reduction of update operation done during training process, the energy needed for weight update can be reduced by 137 in the case of a convolutional architecture.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Date de dépôt :
2025-02-25T06:36:28Z