Direct Integration of Biomass‐Derived Furan ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Direct Integration of Biomass‐Derived Furan Polymers for Enhanced Stability and Efficiency in Hybrid Perovskite Solar Cells
Auteur(s) :
Lin, Zilu [Auteur]
Li, Yujia [Auteur]
Nanayang Technological University [NTU]
Das, Maloy [Auteur]
Nanayang Technological University [NTU]
Liang, Caihong [Auteur]
Nanyang Technological University [Singapour] [NTU]
Xiao, Xingchi [Auteur]
Nanayang Technological University [NTU]
Yen, Zhihao [Auteur]
Nanyang Technological University [Singapour] [NTU]
Kulshreshtha, Chandramouli [Auteur]
Nanyang Technological University [Singapour] [NTU]
Chia Wei Min, Luke [Auteur]
Nanyang Technological University [Singapour] [NTU]
Lim Junan, Aren [Auteur]
Nanyang Technological University [Singapour] [NTU]
N'Konou, Kekeli [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Sum, Tze Chien [Auteur]
Nanyang Technological University [Singapour] [NTU]
Mathews, Nripan [Auteur]
Nanayang Technological University [NTU]
Grimsdale, Andrew [Auteur]
Nanayang Technological University [NTU]
Ng, Leonard [Auteur]
Nanayang Technological University [NTU]
Li, Yujia [Auteur]
Nanayang Technological University [NTU]
Das, Maloy [Auteur]
Nanayang Technological University [NTU]
Liang, Caihong [Auteur]
Nanyang Technological University [Singapour] [NTU]
Xiao, Xingchi [Auteur]
Nanayang Technological University [NTU]
Yen, Zhihao [Auteur]
Nanyang Technological University [Singapour] [NTU]
Kulshreshtha, Chandramouli [Auteur]
Nanyang Technological University [Singapour] [NTU]
Chia Wei Min, Luke [Auteur]
Nanyang Technological University [Singapour] [NTU]
Lim Junan, Aren [Auteur]
Nanyang Technological University [Singapour] [NTU]
N'Konou, Kekeli [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Sum, Tze Chien [Auteur]
Nanyang Technological University [Singapour] [NTU]
Mathews, Nripan [Auteur]
Nanayang Technological University [NTU]
Grimsdale, Andrew [Auteur]
Nanayang Technological University [NTU]
Ng, Leonard [Auteur]
Nanayang Technological University [NTU]
Titre de la revue :
Advanced Functional Materials
Éditeur :
Wiley
Date de publication :
2025-02-09
ISSN :
1616-301X
Discipline(s) HAL :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Abstract This study introduces a novel, biomass‐derived, furan‐based conjugated polymer, PBDF‐DFC, enabling a simplified direct precursor integration fabrication method for hybrid perovskite solar cells (HPSCs). Unlike ...
Lire la suite >Abstract This study introduces a novel, biomass‐derived, furan‐based conjugated polymer, PBDF‐DFC, enabling a simplified direct precursor integration fabrication method for hybrid perovskite solar cells (HPSCs). Unlike traditional thiophene‐based polymers, PBDF‐DFC exhibits high solubility in perovskite precursor solvents, allowing direct incorporation into the precursor solution. This direct precursor integration approach significantly streamlines the fabrication process, reducing steps and potentially lowering production costs. The PBDF‐DFC‐modified HPSCs achieves a power conversion efficiency (PCE) of 21.39%, a 7.8% improvement over the 19.84% PCE of control devices. Moreover, these devices demonstrates enhanced stability under various environmental stresses, retaining 90% of their initial efficiency after over 1100 h of storage compared to 52% for control devices. X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses reveals that PBDF‐DFC accumulates at grain boundaries, improving film crystallization and reducing defects. This dual innovation of a new polymer and simplified fabrication process presents a promising pathway for more efficient, stable, and potentially more sustainable HPSCs. The successful integration of PBDF‐DFC and the direct precursor integration method opens new avenues for streamlined production of high‐performance perovskite solar cells, addressing key challenges in scalability and environmental impact.Lire moins >
Lire la suite >Abstract This study introduces a novel, biomass‐derived, furan‐based conjugated polymer, PBDF‐DFC, enabling a simplified direct precursor integration fabrication method for hybrid perovskite solar cells (HPSCs). Unlike traditional thiophene‐based polymers, PBDF‐DFC exhibits high solubility in perovskite precursor solvents, allowing direct incorporation into the precursor solution. This direct precursor integration approach significantly streamlines the fabrication process, reducing steps and potentially lowering production costs. The PBDF‐DFC‐modified HPSCs achieves a power conversion efficiency (PCE) of 21.39%, a 7.8% improvement over the 19.84% PCE of control devices. Moreover, these devices demonstrates enhanced stability under various environmental stresses, retaining 90% of their initial efficiency after over 1100 h of storage compared to 52% for control devices. X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses reveals that PBDF‐DFC accumulates at grain boundaries, improving film crystallization and reducing defects. This dual innovation of a new polymer and simplified fabrication process presents a promising pathway for more efficient, stable, and potentially more sustainable HPSCs. The successful integration of PBDF‐DFC and the direct precursor integration method opens new avenues for streamlined production of high‐performance perovskite solar cells, addressing key challenges in scalability and environmental impact.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Date de dépôt :
2025-02-25T06:36:40Z