Large rectangular cross-section tunnel ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Large rectangular cross-section tunnel undercrossing urban road by micro pipe jacking and joint assembly structure (MPJ & JAS) method in soft soils
Auteur(s) :
Zou, Jia [Auteur]
Xie, Xiongyao [Auteur]
Zhou, Biao [Auteur]
Jiang, Chunzhao [Auteur]
Zhang, Zhen [Auteur]
Han, Jianjun [Auteur]
Dai, Qing [Auteur]
Shahrour, Isam [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Xie, Xiongyao [Auteur]
Zhou, Biao [Auteur]
Jiang, Chunzhao [Auteur]
Zhang, Zhen [Auteur]
Han, Jianjun [Auteur]
Dai, Qing [Auteur]
Shahrour, Isam [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Titre de la revue :
Scientific Reports
Pagination :
5093
Éditeur :
Nature Publishing Group
Date de publication :
2024-03-01
ISSN :
2045-2322
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Abstract With the continuous construction of urban traffic roads, more and more new roads are cut off by existing roads to form “dead end roads”. There is an urgent need for a trenchless method suitable for urban ultra-shallow ...
Lire la suite >Abstract With the continuous construction of urban traffic roads, more and more new roads are cut off by existing roads to form “dead end roads”. There is an urgent need for a trenchless method suitable for urban ultra-shallow overburden to build the undercrossing tunnel. To solve this problem, this paper proposed the micro pipe jacking and joint assembly structure (MPJ & JAS) method, which has the characteristics of shallow burial depth, low cost, short construction time, flexible cross-section setting and high space utilization. The MPJ & JAS method construct a large cross-section tunnel through assembling small cross-section elements, quite different from traditional methods. Therefore, this paper designed a CT-shaped integrated joint, the mechanical performance of which was verified and clarified by tensile test. The bending test and finite element (FE) analysis proved the reliability of MPJ & JAS tunnel structure, and confirmed the structure performances such as the failure models, crack behaviors, load–deflection response and stress–strain distribution. Moreover, the influences of the steel plate thickness, concrete strength and shear connector spacing were determined by the FE analysis. On the basis of test results and reasonable assumptions, a theoretical design method considering the influence of the CT-shaped integrated joint was proposed, which can effectively predict the bending strength of the MPJ & JAS tunnel structure with an error of less than 10%. Finally, in view of the characteristics of the MPJ & JAS method, the suitable micro pipe jacking machine, soil reinforcement measure, hydraulic traction construction technology, high-precision guidance system and concrete construction quality detection method based on the phased array ultrasonic imaging technology were developed, supporting the accurate and efficient construction of the MPJ & JAS tunnel.Lire moins >
Lire la suite >Abstract With the continuous construction of urban traffic roads, more and more new roads are cut off by existing roads to form “dead end roads”. There is an urgent need for a trenchless method suitable for urban ultra-shallow overburden to build the undercrossing tunnel. To solve this problem, this paper proposed the micro pipe jacking and joint assembly structure (MPJ & JAS) method, which has the characteristics of shallow burial depth, low cost, short construction time, flexible cross-section setting and high space utilization. The MPJ & JAS method construct a large cross-section tunnel through assembling small cross-section elements, quite different from traditional methods. Therefore, this paper designed a CT-shaped integrated joint, the mechanical performance of which was verified and clarified by tensile test. The bending test and finite element (FE) analysis proved the reliability of MPJ & JAS tunnel structure, and confirmed the structure performances such as the failure models, crack behaviors, load–deflection response and stress–strain distribution. Moreover, the influences of the steel plate thickness, concrete strength and shear connector spacing were determined by the FE analysis. On the basis of test results and reasonable assumptions, a theoretical design method considering the influence of the CT-shaped integrated joint was proposed, which can effectively predict the bending strength of the MPJ & JAS tunnel structure with an error of less than 10%. Finally, in view of the characteristics of the MPJ & JAS method, the suitable micro pipe jacking machine, soil reinforcement measure, hydraulic traction construction technology, high-precision guidance system and concrete construction quality detection method based on the phased array ultrasonic imaging technology were developed, supporting the accurate and efficient construction of the MPJ & JAS tunnel.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Date de dépôt :
2025-02-26T07:58:31Z
Fichiers
- s41598-024-55754-7.pdf
- Accès libre
- Accéder au document