The existence of fertile hybrids of closely ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
The existence of fertile hybrids of closely related model earthworm species, Eisenia andrei and E. fetida
Auteur(s) :
Plytycz, Barbara [Auteur]
Bigaj, Janusz [Auteur]
Osikowski, Artur [Auteur]
Hofman, Sebastian [Auteur]
Falniowski, Andrzej [Auteur]
Panz, Tomasz [Auteur]
Grzmil, Pawel [Auteur]
Vandenbulcke, Franck [Auteur]
Université de Lille
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Bigaj, Janusz [Auteur]
Osikowski, Artur [Auteur]
Hofman, Sebastian [Auteur]
Falniowski, Andrzej [Auteur]
Panz, Tomasz [Auteur]
Grzmil, Pawel [Auteur]
Vandenbulcke, Franck [Auteur]
Université de Lille
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Titre de la revue :
PLOS ONE
Pagination :
e0191711
Éditeur :
Public Library of Science
Date de publication :
2018
ISSN :
1932-6203
Résumé en anglais : [en]
Lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still ...
Lire la suite >Lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still debatable. During the present investigation fertile hybrids of Ea and Ef were detected. Virgin specimens of Ea and Ef were laboratory crossed (Ea+Ef) and their progeny was doubly identified. 1 ±identified by species-specific maternally derived haploid mitochondrial DNA sequences of the COI gene being either `a' for worms hatched from Ea ova or `f' for worms hatched from Ef ova. 2 ±identified by the diploid maternal/ paternal nuclear DNA sequences of 28s rRNA gene being either `AA' for Ea, `FF' for Ef, or AF/FA for their hybrids derived either from the `aA' or `fF' ova, respectively. Among offspring of Ea+Ef pairs in F1 generation there were mainly aAA and fFF earthworms resulted from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids from fF ova. In F2 generation resulting from aAF hybrids mated with aAA a new generations of aAA and aAF hybrids were noticed, while aAF hybrids mated with fFF gave fFF and both aAF and fFA hybrids. Hybrids intercrossed together produced plenty of cocoons but no hatchlings independently whether aAF+aAF or aAF+fFA were mated. These results indicated that Ea and Ef species, easy to maintain in aboratory and commonly used as convenient models in biomedicine and ecotoxicology, may also serve in studies on molecular basis of interspecific barriers and mechanisms of introgression and speciation. Hypothetically, their asymmetrical hybridization can be modified by some external factors.Lire moins >
Lire la suite >Lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still debatable. During the present investigation fertile hybrids of Ea and Ef were detected. Virgin specimens of Ea and Ef were laboratory crossed (Ea+Ef) and their progeny was doubly identified. 1 ±identified by species-specific maternally derived haploid mitochondrial DNA sequences of the COI gene being either `a' for worms hatched from Ea ova or `f' for worms hatched from Ef ova. 2 ±identified by the diploid maternal/ paternal nuclear DNA sequences of 28s rRNA gene being either `AA' for Ea, `FF' for Ef, or AF/FA for their hybrids derived either from the `aA' or `fF' ova, respectively. Among offspring of Ea+Ef pairs in F1 generation there were mainly aAA and fFF earthworms resulted from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids from fF ova. In F2 generation resulting from aAF hybrids mated with aAA a new generations of aAA and aAF hybrids were noticed, while aAF hybrids mated with fFF gave fFF and both aAF and fFA hybrids. Hybrids intercrossed together produced plenty of cocoons but no hatchlings independently whether aAF+aAF or aAF+fFA were mated. These results indicated that Ea and Ef species, easy to maintain in aboratory and commonly used as convenient models in biomedicine and ecotoxicology, may also serve in studies on molecular basis of interspecific barriers and mechanisms of introgression and speciation. Hypothetically, their asymmetrical hybridization can be modified by some external factors.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
ACLO
Source :
Date de dépôt :
2025-02-26T12:13:20Z