Probing the local piezoelectric behavior ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Probing the local piezoelectric behavior in stretched barium titanate/poly(vinylidene fluoride) nanocomposites
Auteur(s) :
Ferri, Anthony [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
UCCS Équipe Couches Minces & Nanomatériaux
Barrau, Sophie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bourez, R. [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Da Costa, Antonio [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Chambrier, Marie-Helene [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
UCCS Équipe Couches Minces & Nanomatériaux
Marin, Adeline [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Defebvin, Juliette [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Lefebvre, Jean-Marc [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Desfeux, Rachel [Auteur]
UCCS Équipe Couches Minces & Nanomatériaux
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
UCCS Équipe Couches Minces & Nanomatériaux
Barrau, Sophie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bourez, R. [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Da Costa, Antonio [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Chambrier, Marie-Helene [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
UCCS Équipe Couches Minces & Nanomatériaux
Marin, Adeline [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Defebvin, Juliette [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Lefebvre, Jean-Marc [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Desfeux, Rachel [Auteur]
UCCS Équipe Couches Minces & Nanomatériaux
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Titre de la revue :
COMPOSITES SCIENCE AND TECHNOLOGY
Nom court de la revue :
Composites Science and Technology
Pagination :
107914
Éditeur :
Elsevier BV
Date de publication :
2020-01
ISSN :
0266-3538
Discipline(s) HAL :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
Résumé en anglais : [en]
The nanoscale piezoelectric and ferroelectric behavior of barium titanate/poly(vinylidene fluoride) (BT/PVDF) nanocomposite films has been investigated by means of atomic force microscopy (AFM). An uniaxial stretching step ...
Lire la suite >The nanoscale piezoelectric and ferroelectric behavior of barium titanate/poly(vinylidene fluoride) (BT/PVDF) nanocomposite films has been investigated by means of atomic force microscopy (AFM). An uniaxial stretching step was first carried out to promote the polar β crystal phase of the PVDF matrix, as confirmed by infrared spectroscopy and piezoelectric force microscopy (PFM) analysis. Fragmentation of the original polymer crystalline structure upon drawing, as evidenced by the presence of nanometric crystalline blocks did not damage the composite film, thanks to the strong interfacial cohesion between ceramic and polymer brought by nitrodopamine functionalization of the BT inclusions. By scanning the composite surface using PFM, highly piezo-active regions were evidenced and attributed to the BT nanoparticles that could not be identified on the AFM topography images. The precise manipulation of the ferroelectric polarization states in these individual BT grains embedded into the PVDF matrix has been successfully achieved, confirmed by the local electromechanical deformation simultaneously detected. Reversible switching of the out-of-plane polarization orientation spatially confined into the particles was evidenced. The ability of the contact PFM tool to both directly visualize individual piezoelectric nanofillers dispersed into a polymer matrix and monitor the polarization states is demonstrated, thus highlighting the versatility of PFM for the advanced characterization of electroactive nanocomposites.Lire moins >
Lire la suite >The nanoscale piezoelectric and ferroelectric behavior of barium titanate/poly(vinylidene fluoride) (BT/PVDF) nanocomposite films has been investigated by means of atomic force microscopy (AFM). An uniaxial stretching step was first carried out to promote the polar β crystal phase of the PVDF matrix, as confirmed by infrared spectroscopy and piezoelectric force microscopy (PFM) analysis. Fragmentation of the original polymer crystalline structure upon drawing, as evidenced by the presence of nanometric crystalline blocks did not damage the composite film, thanks to the strong interfacial cohesion between ceramic and polymer brought by nitrodopamine functionalization of the BT inclusions. By scanning the composite surface using PFM, highly piezo-active regions were evidenced and attributed to the BT nanoparticles that could not be identified on the AFM topography images. The precise manipulation of the ferroelectric polarization states in these individual BT grains embedded into the PVDF matrix has been successfully achieved, confirmed by the local electromechanical deformation simultaneously detected. Reversible switching of the out-of-plane polarization orientation spatially confined into the particles was evidenced. The ability of the contact PFM tool to both directly visualize individual piezoelectric nanofillers dispersed into a polymer matrix and monitor the polarization states is demonstrated, thus highlighting the versatility of PFM for the advanced characterization of electroactive nanocomposites.Lire moins >
Langue :
Anglais
Audience :
Non spécifiée
Projet ANR :
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Date de dépôt :
2019-11-22T08:13:54Z
2019-11-22T08:21:46Z
2019-11-22T08:48:44Z
2019-11-22T08:21:46Z
2019-11-22T08:48:44Z