Enthalpy-driven interactions with sulfated ...
Type de document :
Article dans une revue scientifique
PMID :
URL permanente :
Titre :
Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides
Auteur(s) :
Takechi-Haraya, Yuki [Auteur]
Nadai, Ryo [Auteur]
Kimura, Hitoshi [Auteur]
Nishitsuji, Kazuchika [Auteur]
Uchimura, Kenji [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Sakai-Kato, Kumiko [Auteur]
Kawakami, Kohsaku [Auteur]
Shigenaga, Akira [Auteur]
Kawakami, Toru [Auteur]
Otaka, Akira [Auteur]
Hojo, Hironobu [Auteur]
Sakashita, Naomi [Auteur]
Saito, Hiroyuki [Auteur]
Nadai, Ryo [Auteur]
Kimura, Hitoshi [Auteur]
Nishitsuji, Kazuchika [Auteur]
Uchimura, Kenji [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Sakai-Kato, Kumiko [Auteur]
Kawakami, Kohsaku [Auteur]
Shigenaga, Akira [Auteur]
Kawakami, Toru [Auteur]
Otaka, Akira [Auteur]
Hojo, Hironobu [Auteur]
Sakashita, Naomi [Auteur]
Saito, Hiroyuki [Auteur]
Titre de la revue :
Biochimica et biophysica acta
Nom court de la revue :
Biochim. Biophys. Acta
Numéro :
1858
Pagination :
1339-1349
Date de publication :
2016-06
ISSN :
0006-3002
Mot(s)-clé(s) en anglais :
Amino Acid Sequence
Unilamellar Liposomes
Cricetinae
Binding enthalpy
Glycosaminoglycans
Lysine peptide
Peptides
Cricetulus
Molecular Sequence Data
Cell Membrane Permeability
Cell membrane penetration
Sulfates
Thermodynamics
Animals
Arginine
Arginine peptide
Proton Magnetic Resonance Spectroscopy
Heparin
CHO Cells
Unilamellar Liposomes
Cricetinae
Binding enthalpy
Glycosaminoglycans
Lysine peptide
Peptides
Cricetulus
Molecular Sequence Data
Cell Membrane Permeability
Cell membrane penetration
Sulfates
Thermodynamics
Animals
Arginine
Arginine peptide
Proton Magnetic Resonance Spectroscopy
Heparin
CHO Cells
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) ...
Lire la suite >The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides.Lire moins >
Lire la suite >The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides.Lire moins >
Langue :
Anglais
Établissement(s) :
CNRS
Université de Lille
Université de Lille
Date de dépôt :
2020-02-12T15:11:36Z