• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Lille Économie Management (LEM) - UMR 9221
  • View Item
  •   LillOA Home
  • Liste des unités
  • Lille Économie Management (LEM) - UMR 9221
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predictive spatio-temporal model for ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.energy.2016.06.004
Title :
Predictive spatio-temporal model for spatially sparse global solar radiation data
Author(s) :
André, Maïna [Auteur]
Université des Antilles (Pôle Guadeloupe)
Soubdhan, Ted [Auteur]
Groupe de Recherche sur les Energies Renouvelables [GRER]
Ould-Baba, Hanany [Auteur]
Laboratoire de Mathématiques Appliquées de Compiègne [LMAC]
Dabo-Niang, Sophie [Auteur]
Lille économie management - UMR 9221 [LEM]
Groupe de Recherches Modélisation Appliquée à la Recherche en Sciences Sociales [GREMARS]
Journal title :
Energy
Pages :
599 - 608
Publisher :
Elsevier
Publication date :
2016-09
ISSN :
0360-5442
English keyword(s) :
Stations' spatial ordering
intra-hour forecasting
Selection of temporal order
spatio-temporal vector autoregressiv processs
HAL domain(s) :
Planète et Univers [physics]/Autre
English abstract : [en]
This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stations) separated with irregular ...
Show more >
This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stations) separated with irregular distances from 26 km to 56 km. The proposed model is a spatio temporal vector autoregressive VAR model specifically designed for the analysis of spatially sparse spatio-temporal data. This model differs from classic linear models in using spatial and temporal parameters where the available pre-dictors are the lagged values at each station. A spatial structure of stations is defined by the sequential introduction of predictors in the model. Moreover, an iterative strategy in the process of our model will select the necessary stations removing the uninteresting predictors and also selecting the optimal p-order. We studied the performance of this model. The metric error, the relative root mean squared error (rRMSE), is presented at different short time scales. Moreover, we compared the results of our model to simple and well known persistence model and those found in literature.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Lille Économie Management (LEM) - UMR 9221
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01823261/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01823261/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01823261/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01823261/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017