Liquid plug formation in an airway closure model
Document type :
Article dans une revue scientifique: Article original
Title :
Liquid plug formation in an airway closure model
Author(s) :
Romanò, Francesco [Auteur]
Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet [LMFL]
Fujioka, H. [Auteur]
Tulane University
Muradoglu, M. [Auteur]
Koç University
Grotberg, J. B. [Auteur]
University of Michigan [Ann Arbor]
Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet [LMFL]
Fujioka, H. [Auteur]
Tulane University
Muradoglu, M. [Auteur]
Koç University
Grotberg, J. B. [Auteur]
University of Michigan [Ann Arbor]
Journal title :
Physical Review Fluids
Pages :
093103
Publisher :
American Physical Society
Publication date :
2019-09-24
ISSN :
2469-990X
Keyword(s) :
Biological fluid dynamics
Capillary waves
Flow instability
Multiphase flows
Surface tension effects
Thin fluid films
Capillary waves
Flow instability
Multiphase flows
Surface tension effects
Thin fluid films
HAL domain(s) :
Physique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn]
Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Biomécanique [physics.med-ph]
Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
Sciences du Vivant [q-bio]/Ingénierie biomédicale
Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Biomécanique [physics.med-ph]
Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
Sciences du Vivant [q-bio]/Ingénierie biomédicale
French abstract :
The closure of a human lung airway is modeled as an instability of a two-phase flow in a pipe coated internally with a Newtonian liquid. For a thick enough coating, the Plateau-Rayleigh instability creates a liquid plug ...
Show more >The closure of a human lung airway is modeled as an instability of a two-phase flow in a pipe coated internally with a Newtonian liquid. For a thick enough coating, the Plateau-Rayleigh instability creates a liquid plug which blocks the airway, halting distal gas exchange. Owing to a bifrontal plug growth, this airway closure flow induces high stress levels on the wall, which is the location of airway epithelial cells. A parametric numerical study is carried out simulating relevant conditions for human lungs, in either ordinary or pathological situations. Our simulations can represent the physical process from pre- to postcoalescence phases. Previous studies have been limited to precoalescence only. The topological change during coalescence induces a high level of stress and stress gradients on the epithelial cells, which are large enough to damage them, causing sublethal or lethal responses. We find that postcoalescence wall stresses can be in the range of 300% to 600% greater than precoalescence values and so introduce an important source of mechanical perturbation to the cells.Show less >
Show more >The closure of a human lung airway is modeled as an instability of a two-phase flow in a pipe coated internally with a Newtonian liquid. For a thick enough coating, the Plateau-Rayleigh instability creates a liquid plug which blocks the airway, halting distal gas exchange. Owing to a bifrontal plug growth, this airway closure flow induces high stress levels on the wall, which is the location of airway epithelial cells. A parametric numerical study is carried out simulating relevant conditions for human lungs, in either ordinary or pathological situations. Our simulations can represent the physical process from pre- to postcoalescence phases. Previous studies have been limited to precoalescence only. The topological change during coalescence induces a high level of stress and stress gradients on the epithelial cells, which are large enough to damage them, causing sublethal or lethal responses. We find that postcoalescence wall stresses can be in the range of 300% to 600% greater than precoalescence values and so introduce an important source of mechanical perturbation to the cells.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-02422996/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02422996/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02422996/document
- Open access
- Access the document
- document
- Open access
- Access the document
- LMFL_PRF_2019_ROMANO.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- LMFL_PRF_2019_ROMANO.pdf
- Open access
- Access the document