Robust Stabilization of Control Affine ...
Type de document :
Communication dans un congrès avec actes
Titre :
Robust Stabilization of Control Affine Systems with Homogeneous Functions
Auteur(s) :
Zimenko, Konstantin [Auteur]
National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] [ITMO]
Polyakov, Andrey [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] [ITMO]
Polyakov, Andrey [Auteur]

Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]

Finite-time control and estimation for distributed systems [VALSE]
Titre de la manifestation scientifique :
IFAC World Congress
Ville :
Berlin
Pays :
Allemagne
Date de début de la manifestation scientifique :
2020-07-12
Mot(s)-clé(s) en anglais :
Nonlinear control
control affine systems
robust stabilization
homogeneous systems
control affine systems
robust stabilization
homogeneous systems
Discipline(s) HAL :
Informatique [cs]/Automatique
Résumé en anglais : [en]
The stabilization problem of the affine control system $\dot x = f_0 (x) + u_1 f_1(x)+..+u_m f_m(x)$ with homogeneous functions $f_i$ is studied. This class of systems is of interest due to the robust properties of homogeneity ...
Lire la suite >The stabilization problem of the affine control system $\dot x = f_0 (x) + u_1 f_1(x)+..+u_m f_m(x)$ with homogeneous functions $f_i$ is studied. This class of systems is of interest due to the robust properties of homogeneity and the fact that many affine systems can be approximated by or transformed to the class under consideration. An advantage of the introduced design method is that the tuning rules are presented in the form of linear matrix inequalities. Performance of the approach is illustrated by a numerical example.Lire moins >
Lire la suite >The stabilization problem of the affine control system $\dot x = f_0 (x) + u_1 f_1(x)+..+u_m f_m(x)$ with homogeneous functions $f_i$ is studied. This class of systems is of interest due to the robust properties of homogeneity and the fact that many affine systems can be approximated by or transformed to the class under consideration. An advantage of the introduced design method is that the tuning rules are presented in the form of linear matrix inequalities. Performance of the approach is illustrated by a numerical example.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02614528/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02614528/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02614528/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- IFAC20_1164_FI.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- IFAC20_1164_FI.pdf
- Accès libre
- Accéder au document