Multi-scale streaming anomalies detection ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...)
Titre :
Multi-scale streaming anomalies detection for time series
Auteur(s) :
Kiran, Ravi [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
CAp 2017
Ville :
Grenoble
Pays :
France
Date de début de la manifestation scientifique :
2017-06-27
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Apprentissage [cs.LG]
Résumé en anglais : [en]
In the class of streaming anomaly detection algorithms for univariate time series, the size of the sliding window over which various statistics are calculated is an important parameter. To address the anomalous variation ...
Lire la suite >In the class of streaming anomaly detection algorithms for univariate time series, the size of the sliding window over which various statistics are calculated is an important parameter. To address the anomalous variation in the scale of the pseudo-periodicity of time series, we define a streaming multi-scale anomaly score with a streaming PCA over a multi-scale lag-matrix. We define three methods of aggregation of the multi-scale anomaly scores. We evaluate their performance on Yahoo! and Numenta dataset for unsupervised anomaly detection benchmark. To the best of authors' knowledge, this is the first time a multi-scale streaming anomaly detection has been proposed and systematically studied.Lire moins >
Lire la suite >In the class of streaming anomaly detection algorithms for univariate time series, the size of the sliding window over which various statistics are calculated is an important parameter. To address the anomalous variation in the scale of the pseudo-periodicity of time series, we define a streaming multi-scale anomaly score with a streaming PCA over a multi-scale lag-matrix. We define three methods of aggregation of the multi-scale anomaly scores. We evaluate their performance on Yahoo! and Numenta dataset for unsupervised anomaly detection benchmark. To the best of authors' knowledge, this is the first time a multi-scale streaming anomaly detection has been proposed and systematically studied.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02568715/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02568715/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02568715/document
- Accès libre
- Accéder au document
- poster_cap2017.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document