Converse Lyapunov-Krasovskii theorem for ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Converse Lyapunov-Krasovskii theorem for ISS of neutral systems in Sobolev spaces
Auteur(s) :
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Fridman, Emilia [Auteur]
Department of Electrical Engineering

Finite-time control and estimation for distributed systems [VALSE]
Fridman, Emilia [Auteur]
Department of Electrical Engineering
Titre de la revue :
Automatica
Éditeur :
Elsevier
Date de publication :
2020
ISSN :
0005-1098
Mot(s)-clé(s) en anglais :
Neutral time-delay systems
Lyapunov-Krasovskii functional
Stabilty
Lyapunov-Krasovskii functional
Stabilty
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
The conditions of existence of a Lyapunov-Krasovskii functional (LKF) for nonlinear input-to-state stable (ISS) neutral type systems are proposed. The system under consideration depends nonlinearly on the delayed state and ...
Lire la suite >The conditions of existence of a Lyapunov-Krasovskii functional (LKF) for nonlinear input-to-state stable (ISS) neutral type systems are proposed. The system under consideration depends nonlinearly on the delayed state and the delayed state derivative, and satisfies the conditions for the existence and uniqueness of the solutions. The LKF and the system properties are defined in a Sobolev space of absolutely continuous functions with bounded derivatives.Lire moins >
Lire la suite >The conditions of existence of a Lyapunov-Krasovskii functional (LKF) for nonlinear input-to-state stable (ISS) neutral type systems are proposed. The system under consideration depends nonlinearly on the delayed state and the delayed state derivative, and satisfies the conditions for the existence and uniqueness of the solutions. The LKF and the system properties are defined in a Sobolev space of absolutely continuous functions with bounded derivatives.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02554143/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02554143/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02554143/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02554143/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Sobolev_LKF_J.pdf
- Accès libre
- Accéder au document
- Sobolev_LKF_J.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Sobolev_LKF_J.pdf
- Accès libre
- Accéder au document