High performance SIMD modular arithmetic ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
High performance SIMD modular arithmetic for polynomial evaluation
Auteur(s) :
Fortin, Pierre [Auteur]
Performance et Qualité des Algorithmes Numériques [PEQUAN]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Fleury, Ambroise [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Lemaire, Francois [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Monagan, Michael [Auteur]
Department of Mathematics [Burnaby] [SFU]
Performance et Qualité des Algorithmes Numériques [PEQUAN]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Fleury, Ambroise [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Lemaire, Francois [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Monagan, Michael [Auteur]
Department of Mathematics [Burnaby] [SFU]
Titre de la revue :
Concurrency and Computation: Practice and Experience
Pagination :
e6270
Éditeur :
Wiley
Date de publication :
2021-08-25
ISSN :
1532-0626
Mot(s)-clé(s) en anglais :
instruction-level parallelism
polynomial evaluation
modular arithmetic
operational intensity
SIMD
polynomial evaluation
modular arithmetic
operational intensity
SIMD
Discipline(s) HAL :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
Informatique [cs]/Calcul formel [cs.SC]
Informatique [cs]/Calcul formel [cs.SC]
Résumé en anglais : [en]
Two essential problems in Computer Algebra, namely polynomial factorization and polynomial greatest common divisor computation, can be efficiently solved thanks to multiple polynomial evaluations in two variables using ...
Lire la suite >Two essential problems in Computer Algebra, namely polynomial factorization and polynomial greatest common divisor computation, can be efficiently solved thanks to multiple polynomial evaluations in two variables using modular arithmetic. In this article, we focus on the efficient computation of such polynomial evaluations on one single CPU core. We first show how to leverage SIMD computing for modular arithmetic on AVX2 and AVX-512 units, using both intrinsics and OpenMP compiler directives. Then we manage to increase the operational intensity and to exploit instruction-level parallelism in order to increase the compute efficiency of these polynomial evaluations. All this results in the end to performance gains up to about 5x on AVX2 and 10x on AVX-512.Lire moins >
Lire la suite >Two essential problems in Computer Algebra, namely polynomial factorization and polynomial greatest common divisor computation, can be efficiently solved thanks to multiple polynomial evaluations in two variables using modular arithmetic. In this article, we focus on the efficient computation of such polynomial evaluations on one single CPU core. We first show how to leverage SIMD computing for modular arithmetic on AVX2 and AVX-512 units, using both intrinsics and OpenMP compiler directives. Then we manage to increase the operational intensity and to exploit instruction-level parallelism in order to increase the compute efficiency of these polynomial evaluations. All this results in the end to performance gains up to about 5x on AVX2 and 10x on AVX-512.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02552673/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/2004.11571
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02552673/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02552673/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- article-HAL-sc.pdf
- Accès libre
- Accéder au document
- 2004.11571
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- article-HAL-sc.pdf
- Accès libre
- Accéder au document