Trajectory Tracking Control Design for ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Trajectory Tracking Control Design for Large-Scale Linear Dynamical Systems With Applications to Soft Robotics
Auteur(s) :
Thieffry, Maxime [Auteur]
Deformable Robots Simulation Team [DEFROST ]
Kruszewski, Alexandre [Auteur]
Deformable Robots Simulation Team [DEFROST ]
Guerra, Thierry-Marie [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Duriez, Christian [Auteur]
Deformable Robots Simulation Team [DEFROST ]
Deformable Robots Simulation Team [DEFROST ]
Kruszewski, Alexandre [Auteur]

Deformable Robots Simulation Team [DEFROST ]
Guerra, Thierry-Marie [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Duriez, Christian [Auteur]

Deformable Robots Simulation Team [DEFROST ]
Titre de la revue :
IEEE Transactions on Control Systems Technology
Pagination :
556-566
Éditeur :
Institute of Electrical and Electronics Engineers
Date de publication :
2021-03
ISSN :
1063-6536
Mot(s)-clé(s) en anglais :
robust control
soft robotics
Large-scale systems
model-order reduction
Trajectory tracking
Stability analysis
soft robotics
Large-scale systems
model-order reduction
Trajectory tracking
Stability analysis
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Informatique [cs]/Automatique
Informatique [cs]/Automatique
Résumé en anglais : [en]
This article presents new results to control process modeled through linear large-scale systems. Numerical methods are widely used to model physical systems, and the finite-element method is one of the most common methods. ...
Lire la suite >This article presents new results to control process modeled through linear large-scale systems. Numerical methods are widely used to model physical systems, and the finite-element method is one of the most common methods. However, for this method to be precise, it requires a precise spatial mesh of the process. Large-scale dynamical systems arise from this spatial discretization. We propose a methodology to design an observer-based output feedback controller. First, a model reduction step is used to get a system of acceptable dimension. Based on this low-order system, two linear matrix inequality problems provide us, respectively, with the observer and controller gains. In both the cases, model and reduction errors are taken into account in the computations. This provides robustness with respect to the reduction step and guarantees the stability of the original large-scale system. Finally, the proposed method is applied to a physical setup-a soft robotics platform-to show its feasibility.Lire moins >
Lire la suite >This article presents new results to control process modeled through linear large-scale systems. Numerical methods are widely used to model physical systems, and the finite-element method is one of the most common methods. However, for this method to be precise, it requires a precise spatial mesh of the process. Large-scale dynamical systems arise from this spatial discretization. We propose a methodology to design an observer-based output feedback controller. First, a model reduction step is used to get a system of acceptable dimension. Based on this low-order system, two linear matrix inequality problems provide us, respectively, with the observer and controller gains. In both the cases, model and reduction errors are taken into account in the computations. This provides robustness with respect to the reduction step and guarantees the stability of the original large-scale system. Finally, the proposed method is applied to a physical setup-a soft robotics platform-to show its feasibility.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02404003/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02404003/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02404003/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 08930042%20%281%29.pdf
- Accès libre
- Accéder au document
- 08930042%20%281%29.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 08930042%20%281%29.pdf
- Accès libre
- Accéder au document