Correlation Clustering with Adaptive ...
Type de document :
Communication dans un congrès avec actes
Titre :
Correlation Clustering with Adaptive Similarity Queries
Auteur(s) :
Bressan, Marco [Auteur]
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
Cesa-Bianchi, Nicolo [Auteur]
Dipartimento di Scienze dell'Informazione [Milano]
Paudice, Andrea [Auteur]
Università degli Studi di Milano = University of Milan [UNIMI]
Vitale, Fabio [Auteur]
Machine Learning in Information Networks [MAGNET]
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
Cesa-Bianchi, Nicolo [Auteur]
Dipartimento di Scienze dell'Informazione [Milano]
Paudice, Andrea [Auteur]
Università degli Studi di Milano = University of Milan [UNIMI]
Vitale, Fabio [Auteur]
Machine Learning in Information Networks [MAGNET]
Titre de la manifestation scientifique :
Conference on Neural Information Processing Systems
Ville :
Vancouver
Pays :
Canada
Date de début de la manifestation scientifique :
2019-12-08
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
In correlation clustering, we are given $n$ objects together with a binary similarity score between each pair of them. The goal is to partition the objects into clusters so to minimise the disagreements with the scores. ...
Lire la suite >In correlation clustering, we are given $n$ objects together with a binary similarity score between each pair of them. The goal is to partition the objects into clusters so to minimise the disagreements with the scores. In this work we investigate correlation clustering as an active learning problem: each similarity score can be learned by making a query, and the goal is to minimise both the disagreements and the total number of queries. On the one hand, we describe simple active learning algorithms, which provably achieve an almost optimal trade-off while giving cluster recovery guarantees, and we test them on different datasets. On the other hand, we prove information-theoretical bounds on the number of queries necessary to guarantee a prescribed disagreement bound. These results give a rich characterization of the trade-off between queries and clustering error.Lire moins >
Lire la suite >In correlation clustering, we are given $n$ objects together with a binary similarity score between each pair of them. The goal is to partition the objects into clusters so to minimise the disagreements with the scores. In this work we investigate correlation clustering as an active learning problem: each similarity score can be learned by making a query, and the goal is to minimise both the disagreements and the total number of queries. On the one hand, we describe simple active learning algorithms, which provably achieve an almost optimal trade-off while giving cluster recovery guarantees, and we test them on different datasets. On the other hand, we prove information-theoretical bounds on the number of queries necessary to guarantee a prescribed disagreement bound. These results give a rich characterization of the trade-off between queries and clustering error.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02376961/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/1905.11902
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02376961/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02376961/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 1905.11902.pdf
- Accès libre
- Accéder au document
- 1905.11902
- Accès libre
- Accéder au document