Observer synthesis under time-varying ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Observer synthesis under time-varying sampling for Lipschitz nonlinear systems
Auteur(s) :
Etienne, Lucien [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Hetel, Laurentiu [Auteur]
Systèmes Non Linéaires et à Retards [SyNeR]
Efimov, Denis [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Petreczky, Mihaly [Auteur]
Systèmes Non Linéaires et à Retards [SyNeR]
Non-Asymptotic estimation for online systems [NON-A]
Hetel, Laurentiu [Auteur]
Systèmes Non Linéaires et à Retards [SyNeR]
Efimov, Denis [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Petreczky, Mihaly [Auteur]
Systèmes Non Linéaires et à Retards [SyNeR]
Titre de la revue :
Automatica
Pagination :
433-440
Éditeur :
Elsevier
Date de publication :
2017
ISSN :
0005-1098
Mot(s)-clé(s) en anglais :
Continuous–discrete observers
Nonlinear systems
Hybrid systems
Impulsive observer
Continuous-discrete observers
Nonlinear systems
Hybrid systems
Impulsive observer
Continuous-discrete observers
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
In this work, the problem of observation of continuous-time nonlinear Lipschitz systems under time-varying discrete measurements is considered. This class of systems naturally occurs when continuous processes are observed ...
Lire la suite >In this work, the problem of observation of continuous-time nonlinear Lipschitz systems under time-varying discrete measurements is considered. This class of systems naturally occurs when continuous processes are observed through digital sensors and information is sent via a network to a computer for state estimation. Since the network introduces variations in the sampling time, the observer must be designed so that it takes them into account. Here impulsive observers, which make instantaneous correction when information is received, are investigated. Moreover, we consider time-varying observer gains adapting to the varying sampling interval. In order to deal with both continuous-time and discrete-time dynamics, a new hybrid model is used to state the problem and establish the convergence of the proposed observer. First, generic conditions are provided using a hybrid Lyapunov function. Then, a restriction of the generic Lyapunov function is used to establish tractable conditions that allows the analysis and synthesis of an impulsive gain.Lire moins >
Lire la suite >In this work, the problem of observation of continuous-time nonlinear Lipschitz systems under time-varying discrete measurements is considered. This class of systems naturally occurs when continuous processes are observed through digital sensors and information is sent via a network to a computer for state estimation. Since the network introduces variations in the sampling time, the observer must be designed so that it takes them into account. Here impulsive observers, which make instantaneous correction when information is received, are investigated. Moreover, we consider time-varying observer gains adapting to the varying sampling interval. In order to deal with both continuous-time and discrete-time dynamics, a new hybrid model is used to state the problem and establish the convergence of the proposed observer. First, generic conditions are provided using a hybrid Lyapunov function. Then, a restriction of the generic Lyapunov function is used to establish tractable conditions that allows the analysis and synthesis of an impulsive gain.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01637888v3/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01637888v3/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01637888v3/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- impulsobsdraft2.pdf
- Accès libre
- Accéder au document
- impulsobsdraft2.pdf
- Accès libre
- Accéder au document