Surrogate model based optimization of ...
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
Surrogate model based optimization of constrained mixed variable problems: application to the design of a launch vehicle thrust frame
Auteur(s) :
Pelamatti, Julien [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Brevault, Loïc [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Balesdent, Mathieu [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Talbi, El-Ghazali [Auteur]
Université de Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Optimisation de grande taille et calcul large échelle [BONUS]
Guerin, Yannick [Auteur]
Centre National d'Etudes Spatiales - Direction Des Lanceurs. [CNES]
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) [CEA-DES (ex-DEN)]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Brevault, Loïc [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Balesdent, Mathieu [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Talbi, El-Ghazali [Auteur]

Université de Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Optimisation de grande taille et calcul large échelle [BONUS]
Guerin, Yannick [Auteur]
Centre National d'Etudes Spatiales - Direction Des Lanceurs. [CNES]
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) [CEA-DES (ex-DEN)]
Titre de la manifestation scientifique :
SciTech 2019 - AIAA Science and Technology Forum and Exposition
Ville :
SAN DIEGO
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2019-01-07
Éditeur :
American Institute of Aeronautics and Astronautics
Mot(s)-clé(s) en anglais :
AVIATION
DESIGN
GLOBAL OPTIMIZATION
LAUNCH VEHICLES
NUMERICAL METHODS
CONSTRAINED OPTIMIZATION
DESIGN
GLOBAL OPTIMIZATION
LAUNCH VEHICLES
NUMERICAL METHODS
CONSTRAINED OPTIMIZATION
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
Within the framework of complex systems design, such as launch vehicles, numerical optimization is an essential tool as it allows to reduce the design process time and costs. The inclusion of discrete variables in the ...
Lire la suite >Within the framework of complex systems design, such as launch vehicles, numerical optimization is an essential tool as it allows to reduce the design process time and costs. The inclusion of discrete variables in the design optimization process allows to extend the applicability of numerical optimization methods to a broader number of systems and sub-systems. In this paper, a recently proposed adaptation of the Efficient Global Optimization method for constrained mixed-variable problems is applied to the design optimization of a launch vehicle thrust frame, which depends on both continuous sizing parameters and discrete variables characterizing the number of structural reinforcements. The Efficient Global Optimization adaptation that is considered is based on a redefinition of the Gaussian Process kernel as a product between a standard continuous kernel and a second kernel representing the covariance between the discrete variable values. From the results obtained on an analytical test-case as well as on the launch vehicle thrust frame design optimization, it is shown that the use of the mixed variable Efficient Global Optimization algorithm allows to converge towards the neigh-borhoods of the problems optima with fewer function evaluations when compared to reference optimization algorithms.Lire moins >
Lire la suite >Within the framework of complex systems design, such as launch vehicles, numerical optimization is an essential tool as it allows to reduce the design process time and costs. The inclusion of discrete variables in the design optimization process allows to extend the applicability of numerical optimization methods to a broader number of systems and sub-systems. In this paper, a recently proposed adaptation of the Efficient Global Optimization method for constrained mixed-variable problems is applied to the design optimization of a launch vehicle thrust frame, which depends on both continuous sizing parameters and discrete variables characterizing the number of structural reinforcements. The Efficient Global Optimization adaptation that is considered is based on a redefinition of the Gaussian Process kernel as a product between a standard continuous kernel and a second kernel representing the covariance between the discrete variable values. From the results obtained on an analytical test-case as well as on the launch vehicle thrust frame design optimization, it is shown that the use of the mixed variable Efficient Global Optimization algorithm allows to converge towards the neigh-borhoods of the problems optima with fewer function evaluations when compared to reference optimization algorithms.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :