Robust $H_\infty$ observer-based stabilization ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Robust $H_\infty$ observer-based stabilization of linear discrete-time systems with parameter uncertainties
Auteur(s) :
Bennani, Cherifa [Auteur]
Laboratoire de Mathématiques Pures et Appliquées [Tizi-Ouzou] [LMPA]
Bedouhene, Fazia [Auteur]
Laboratoire de Mathématiques Pures et Appliquées [Tizi-Ouzou] [LMPA]
Bibi, Hamza [Auteur]
Laboratoire de Mathématiques Pures et Appliquées [Tizi-Ouzou] [LMPA]
Zemouche, Ali [Auteur]
Centre de Recherche en Automatique de Nancy [CRAN]
Rajamani, Rajesh [Auteur]
University of Minnesota [Twin Cities] [UMN]
Chaib Draa, Khadidja [Auteur]
University of Luxembourg Incubator = Incubateur de l'université du Luxembourg
Aitouche, A. [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Laboratoire de Mathématiques Pures et Appliquées [Tizi-Ouzou] [LMPA]
Bedouhene, Fazia [Auteur]
Laboratoire de Mathématiques Pures et Appliquées [Tizi-Ouzou] [LMPA]
Bibi, Hamza [Auteur]
Laboratoire de Mathématiques Pures et Appliquées [Tizi-Ouzou] [LMPA]
Zemouche, Ali [Auteur]
Centre de Recherche en Automatique de Nancy [CRAN]
Rajamani, Rajesh [Auteur]
University of Minnesota [Twin Cities] [UMN]
Chaib Draa, Khadidja [Auteur]
University of Luxembourg Incubator = Incubateur de l'université du Luxembourg
Aitouche, A. [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la revue :
International Journal of Control, Automation and Systems
Pagination :
2261-2273
Éditeur :
Springer
Date de publication :
2019-09
ISSN :
1598-6446
Mot(s)-clé(s) en anglais :
Bilinear matrix inequality (BMI)
$H_\infty$ criterion linear matrix inequalities (LMIs)
observer-based control
uncertain systems
$H_\infty$ criterion linear matrix inequalities (LMIs)
observer-based control
uncertain systems
Discipline(s) HAL :
Informatique [cs]/Automatique
Résumé en anglais : [en]
This paper addresses the problem of observer-based stabilization of discrete-time linear systems in presence of parameter uncertainties and ℓ2-bounded disturbances. We propose a new variant of the classical two-step LMI ...
Lire la suite >This paper addresses the problem of observer-based stabilization of discrete-time linear systems in presence of parameter uncertainties and ℓ2-bounded disturbances. We propose a new variant of the classical two-step LMI approach. In the first step, we use a slack variable technique to solve the optimization problem resulting from stabilization by a static state feedback. In the second step, a part of the slack variable obtained is incorporated in the ∞ observer-based stabilization problem, to calculate simultaneously the Lyapunov matrix and the observer-based controller gains. The effectiveness of the proposed design methodology is demonstrated using the dynamic model of a quadruple-tank flow process system. Additional numerical illustrations are presented to show the superiority of the proposed Modified Two-Step Method (MTSM) from a LMI feasibility point of view.Lire moins >
Lire la suite >This paper addresses the problem of observer-based stabilization of discrete-time linear systems in presence of parameter uncertainties and ℓ2-bounded disturbances. We propose a new variant of the classical two-step LMI approach. In the first step, we use a slack variable technique to solve the optimization problem resulting from stabilization by a static state feedback. In the second step, a part of the slack variable obtained is incorporated in the ∞ observer-based stabilization problem, to calculate simultaneously the Lyapunov matrix and the observer-based controller gains. The effectiveness of the proposed design methodology is demonstrated using the dynamic model of a quadruple-tank flow process system. Additional numerical illustrations are presented to show the superiority of the proposed Modified Two-Step Method (MTSM) from a LMI feasibility point of view.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :